-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathutils.py
53 lines (43 loc) · 1.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
from config import ModelConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_model_and_tokenizer(model_path, device='cuda:0', eval_mode=True):
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype = torch.float16,
trust_remote_code = True,
use_cache = False,
).to(device)
if eval_mode:
model.eval()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True,
)
return model, tokenizer
def complete_input(config, user_input):
prefix = config.get('prefix', '')
prompt = config.get('prompt', '')
suffix = config.get('suffix', '')
return ''.join([prefix, prompt, user_input, suffix])
def extract_model_embedding(model):
# Check model type
model_type = str(type(model))
supported_models = ['llama', 'internlm', 'baichuan', 'chatglm']
if 'chatglm' in model_type:
layer = model.transformer.embedding.word_embeddings
# print(model.modules.embedding)
elif any(keyword in model_type for keyword in supported_models):
layer = model.model.embed_tokens
else:
raise NotImplementedError
return layer
def random_init(model_name, length):
try:
model_config = getattr(ModelConfig, model_name)[0]
except:
raise NotImplementedError
path = model_config.get('path')
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
init = torch.randint(2, len(tokenizer.get_vocab()), [length])
return tokenizer.decode(init).strip()