-
Notifications
You must be signed in to change notification settings - Fork 188
/
Copy pathSSCDataset.py
99 lines (73 loc) · 3.27 KB
/
SSCDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import numpy as np
def unpack(compressed):
''' given a bit encoded voxel grid, make a normal voxel grid out of it. '''
uncompressed = np.zeros(compressed.shape[0] * 8, dtype=np.uint8)
uncompressed[::8] = compressed[:] >> 7 & 1
uncompressed[1::8] = compressed[:] >> 6 & 1
uncompressed[2::8] = compressed[:] >> 5 & 1
uncompressed[3::8] = compressed[:] >> 4 & 1
uncompressed[4::8] = compressed[:] >> 3 & 1
uncompressed[5::8] = compressed[:] >> 2 & 1
uncompressed[6::8] = compressed[:] >> 1 & 1
uncompressed[7::8] = compressed[:] & 1
return uncompressed
SPLIT_SEQUENCES = {
"train": ["00", "01", "02", "03", "04", "05", "06", "07", "09", "10"],
"valid": ["08"],
"test": ["11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21"]
}
SPLIT_FILES = {
"train": [".bin", ".label", ".invalid", ".occluded"],
"valid": [".bin", ".label", ".invalid", ".occluded"],
"test": [".bin"]
}
EXT_TO_NAME = {".bin": "input", ".label": "label", ".invalid": "invalid", ".occluded": "occluded"}
VOXEL_DIMS = (256, 256, 32)
class SSCDataset:
def __init__(self, directory, split="train"):
""" Load data from given dataset directory. """
self.files = {}
self.filenames = []
for ext in SPLIT_FILES[split]:
self.files[EXT_TO_NAME[ext]] = []
for sequence in SPLIT_SEQUENCES[split]:
complete_path = os.path.join(directory, "sequences", sequence, "voxels")
if not os.path.exists(complete_path): raise RuntimeError("Voxel directory missing: " + complete_path)
files = os.listdir(complete_path)
for ext in SPLIT_FILES[split]:
data = sorted([os.path.join(complete_path, f) for f in files if f.endswith(ext)])
if len(data) == 0: raise RuntimeError("Missing data for " + EXT_TO_NAME[ext])
self.files[EXT_TO_NAME[ext]].extend(data)
# this information is handy for saving the data later, since you need to provide sequences/XX/predictions/000000.label:
self.filenames.extend(
sorted([(sequence, os.path.splitext(f)[0]) for f in files if f.endswith(SPLIT_FILES[split][0])]))
self.num_files = len(self.filenames)
# sanity check:
for k, v in self.files.items():
print(k, len(v))
assert (len(v) == self.num_files)
def __len__(self):
return self.num_files
def __getitem__(self, t):
""" fill dictionary with available data for given index . """
collection = {}
# read raw data and unpack (if necessary)
for typ in self.files.keys():
scan_data = None
if typ == "label":
scan_data = np.fromfile(self.files[typ][t], dtype=np.uint16)
else:
scan_data = unpack(np.fromfile(self.files[typ][t], dtype=np.uint8))
# turn in actual voxel grid representation.
collection[typ] = scan_data.reshape(VOXEL_DIMS)
return self.filenames[t], collection
if __name__ == "__main__":
# Small example of the usage.
# Replace "/path/to/semantic/kitti/" with actual path to the folder containing the "sequences" folder
dataset = SSCDataset("/path/to/semantic/kitti/")
print("# files: {}".format(len(dataset)))
(seq, filename), data = dataset[100]
print("Contents of entry 100 (" + seq + ":" + filename + "):")
for k, v in data.items():
print(" {:8} : shape = {}, contents = {}".format(k, v.shape, np.unique(v)))