-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathre-analysis.Rmd
922 lines (765 loc) · 35 KB
/
re-analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
---
title: "R Notebook"
output: html_document
---
This is our attempt at re-analysis. We only concentrate on RQ1.
First, because this `Rmd` file can be executed by external script to allow automatic generation of all possible permutations of our re-analysis cleaning steps, we define certain variables that conditionally enable features of this document. By default they are all set to `TRUE`:
```{r}
if (! exists("REMOVE_DUPLICATES"))
REMOVE_DUPLICATES = T
if (! exists("REMOVE_TYPESCRIPT"))
REMOVE_TYPESCRIPT = T
if (! exists("REMOVE_V8"))
REMOVE_V8 = T
if (! exists("UNCERTAINTY"))
UNCERTAINTY = T
if (! exists("USE_AUTHORS_INSTEAD_OF_COMMITTERS"))
USE_AUTHORS_INSTEAD_COMMITTERS = T
# sanity check prints
cat(paste("REMOVE_DUPLICATES: ", REMOVE_DUPLICATES, "\n"))
cat(paste("REMOVE_TYPESCRIPT: ", REMOVE_TYPESCRIPT, "\n"))
cat(paste("REMOVE_V8: ", REMOVE_V8, "\n"))
cat(paste("UNCERTAINTY: ", UNCERTAINTY, "\n"))
cat(paste("USE_AUTHORS_INSTEAD_COMMITTERS: ", USE_AUTHORS_INSTEAD_COMMITTERS, "\n"))
```
Next, we setup working dir. Working dir can also be provided by external script, however if it is not provided, we verify that all features are enabled and set it to the default, i.e. `artifact/re-analysis`, where the paper expects the graphs to be found.
```{r}
if (! exists("WORKING_DIR")) {
if (! REMOVE_DUPLICATES & REMOVE_TYPESCRIPT & REMOVE_V8 & UNCERTAINTY & USE_AUTHORS_INSTEAD_COMMITTERS)
stop("If non-default flags are submitted to the re-analysis notebook, WORKING_DIR must be set.")
WORKING_DIR = "./artifact/re-analysis"
}
```
Now initialize the script's environment:
```{r}
# load the file containing the actual implementation details
knitr::opts_chunk$set(echo = FALSE)
source("implementation.R")
initializeEnvironment()
```
# Data Collection
We reuse the cleaning and optimization passes from the repetition and just load the result of that:
```{r}
data = read.csv("./artifact/repetition/Data/newSha.csv")
initial_data = data
initial_number_of_commits = length(unique(data$sha))
initial_number_of_rows = nrow(data)
everything =loadEverything()
```
# Data Cleaning
## Removing Duplication
First, we remove any duplicates, i.e. same commits that are present in multiple projects. We remove all occurences of commits that have duplicates since we do not know which one to pick to stay and different picks may bias the later analysis.
```{r}
if (REMOVE_DUPLICATES) {
sha_proj = data %>% dplyr::select(sha, project) %>% group_by(sha, project) %>% dplyr::summarize(n = n())
duplicates_sha = sha_proj %>% group_by(sha) %>% dplyr::summarize(n = n()) %>% filter(n > 1)
# this is the number of commits that are present in multiple commits
num_duplicates_sha = nrow(duplicates_sha)
check(num_duplicates_sha == 27450)
# how many projects are affected?
dup_repos = data %>% filter(sha %in% duplicates_sha$sha)
dup_repos = unique(dup_repos$project)
num_dup_repos = length(dup_repos)
check(num_dup_repos == 33)
# determine how many commits are there in the affected projects in total
commits_by_dup_repos = data %>% filter(project %in% dup_repos) %>% group_by(sha)
num_commits_by_dup_repos = nrow(commits_by_dup_repos)
# since we can't do better, exclude all duplicate commits from the dataset
data = data %>% filter(! sha %in% duplicates_sha$sha);
# some reporting for the paper
out("numberOfProjectsWithDuplicates", num_dup_repos)
out("numDuplicateCommits", num_duplicates_sha)
out("percentageDuplicateCommits", round(num_duplicates_sha/initial_number_of_commits * 100,2))
out("percentageDuplicateRowsLost", round(100 - nrow(data) / initial_number_of_rows * 100, 2))
hist(duplicates_sha$n, breaks = 100)
}
```
By removing the duplicates we may have created project-language pairs that have fewer than 20 commits. The original study excluded such pairs and we see no reason not to repeat this. Let's find any such rows and delete them
```{r}
if (REMOVE_DUPLICATES) {
num_rows_before_cleanup = nrow(data)
not_keep = data %>% group_by(project, language) %>% dplyr::summarize(n = n()) %>% filter(n < 20)
keep = data %>% group_by(project, language) %>% dplyr::summarize(n = n()) %>% filter(n >= 20)
data = keep %>% inner_join(data, by=c("project", "language"))
out("smallProjectCommits", nrow(not_keep))
out("percentageDuplicationReadjustmentRowsLost", round(100 - nrow(data)/num_rows_before_cleanup * 100, 2))
}
```
## Removing Typescript
The Typescript language was released in October 1, 2012 and is the smallest language in the study. However, its first commit in the study is dated 2003. What is happening here is that that the `.ts` extension is used for translation files, not Typescript, which was not detected by the original study.
```{r}
if (REMOVE_TYPESCRIPT) {
ts = data %>% filter(language == "Typescript")
ts_rows_num = nrow(ts)
ts_proj_num = length(unique(ts$project))
check(ts_proj_num == 53)
out("initialNumTSProjects", ts_proj_num)
ts_commits_num <- length(unique(ts$sha))
check(ts_commits_num == 10105)
out("initialNumTSCommits", ts_commits_num)
ts_dates <- sort(unique(ts$commit_date)) # "2003-03-01"
check(ts_dates[1] == "2003-03-21")
out("tsFirstCommit", ts_dates[1])
}
```
We now remove from TS what we manually confirmed to be translations and not actual TypeScript:
```{r}
if (REMOVE_TYPESCRIPT) {
translation_projects <- c("mythtv", "hw", "SpeedCrunch", "qBittorrent", "mumble", "pokerth", "hydrogen", "unetbootin",
"tiled", "goldendict", "zf2", "Cockatrice", "tagainijisho", "focuswriter", "LibreCAD",
"razor-qt", "qupzilla", "tomahawk", "ppcoin", "mirall", "MuseScore", "shotcut")
ts = ts %>% filter(! project %in% translation_projects)
check(length(unique(ts$sha)) == 4456)
ts = ts %>%
filter(!str_detect(project, "coin")) %>% # remove all the *coin projects
filter(!str_detect(project, "Coin")) %>% # remove all the *Coin projects
filter(!str_detect(project, "change")) # remove all the *change projects
# TODO why are these in remaining???
remaining_translations <- c("antimicro", "identifi", "octopi", "pcbsd", "subsurface", "ttrss", "wps_i18n")
ts = ts %>% filter(!project %in% remaining_translations)
real_ts_num_proj <- length(unique(ts$project))
check(real_ts_num_proj == 16)
out("realTSProjNum", real_ts_num_proj)
real_ts_num_commit <- length(unique(ts$sha))
check(real_ts_num_commit == 3782)
out("realTSCommitsNum", real_ts_num_commit)
real_ts_proj <- unique(ts$project)
}
```
Another issue with Typescript is that a lot of its files are only type definitions, and contain no actual code in Typescript but headers for Javascript functions and classes elsewhere. We should exclude these as well:
```{r}
if (REMOVE_TYPESCRIPT) {
# typescript-node-definitions, DefinitelyTyped, tsd
# DEPRECATED: TSD is deprecated, please use Typings and see this issue for more information.
tdefs1 = ts %>% filter(project=="typescript-node-definitions")
tdefs2 = ts %>% filter(project=="DefinitelyTyped")
tdefs3 = ts %>% filter(project=="tsd")
sts <- length(unique(ts$sha))
st1 <- length(unique(tdefs1$sha))
st2 <- length(unique(tdefs2$sha))
st3 <- length(unique(tdefs3$sha))
ratio <- round((st1 + st2 + st3)/sts*100, 1)
check(ratio == 34.6)
out("ratioOfTypeDefTSCommits", ratio)
ts = ts %>% filter(project !="typescript-node-definitions") %>% filter(project !="DefinitelyTyped") %>% filter(project !="tsd")
}
```
So what are we left with?
```{r}
if (REMOVE_TYPESCRIPT) {
ts_valid_rows_num = nrow(ts)
ts_valid_commits = length(unique(ts$sha))
ts_valid_projects = length(unique(ts$project))
out("tsValidRows", ts_valid_rows_num)
out("tsValidCommits", ts_valid_commits)
out("tsValidProjects", ts_valid_projects)
}
```
We are down to only 13 projects out of 50 and given the fact Typescript was the smallest language to begin with and how much of its commits we had to remove with minimal effort, the only safe thing we can do is to exclude Typescript from the analysis completely:
```{r}
if (REMOVE_TYPESCRIPT) {
num_rows_before_ts = nrow(data)
data = data %>% filter(language != "Typescript")
out("percentageTypescriptRowsLost", round(100 - nrow(data) / num_rows_before_ts * 100, 2))
data$language = factor(as.character(data$language))
}
```
# Removing V8
The V8 project is plagued with errors and inaccuracies:
```{r}
if (REMOVE_V8) {
v8 = everything %>% filter(project == "v8")
out("vCCommits", length(unique(v8[v8$tag == "c",]$sha)))
out("vCppCommits", length(unique(v8[v8$tag == "cpp",]$sha)))
out("vJavascriptCommits", length(unique(v8[v8$tag == "javascript",]$sha)))
out("vPythonCommits", length(unique(v8[v8$tag == "python",]$sha)))
}
```
The paper ignores all of V8's C++ files (the `.cc` and `.h` file extensions are ignored) and classifies V8 as a JavaScript project. This is obviously wrong and since V8 is one of the larger projects, may skew the analysis substantially. To avoid this, we remove V8 from the data:
```{r}
if (REMOVE_V8) {
num_rows_before_v8 = nrow(data)
data = data %>% filter(project != "v8")
out("percentageVEightRowsLost", round(100 - nrow(data) / num_rows_before_v8 * 100, 2))
}
```
## Summary
Let's summarize the final numbers after all cleaning:
```{r}
newShaNum <- length(unique(data$sha))
ratioSha <- round(100 - (newShaNum/initial_number_of_commits*100),2)
out("finalNumSha", newShaNum)
out("finalNumShaMio", round(newShaNum/1000/1000,1))
out("ratioReducedSha", ratioSha)
out("ratioReducedShaRows", round(100 - nrow(data) / nrow(initial_data) * 100, 2))
f_number_of_projects <- length(unique(data$project))
check(f_number_of_projects == 719)
out("finalNumberOfProjectsIncluded", f_number_of_projects)
f_sloc <- sum(data$insertion) - sum(data$deletion)
f_sloc_mio <- round(f_sloc / 1000000, 1)
check(f_sloc_mio == 58.2)
out("finalSlocMio", f_sloc_mio)
f_number_authors <- length(unique(data$author))
check(f_number_authors == 46204)
out("finalNumberAuthors", round(f_number_authors/1000,0))
f_bugFixes = data %>% filter(isbug == 1)
f_numberOfBugFixes <- length(unique(f_bugFixes$sha))
out("finalNumberOfBugFixes", f_numberOfBugFixes)
```
Let's see how much data we shed in different categories:
```{r}
cat(paste("Commits (unique): ", round(100 - length(unique(data$sha)) / length(unique(initial_data$sha)) * 100, 2), "%\n"))
cat(paste("Commits (rows): ", round(100 - nrow(data) / nrow(initial_data) * 100, 2), "%\n"))
cat(paste("Buggy commits (rows): ", round(100 - sum(data$isbug) / sum(initial_data$isbug) * 100, 2), "%\n"))
cat(paste("Projects: ", round(100 - length(unique(data$project)) / length(unique(initial_data$project)) * 100, 2), "%\n"))
cat(paste("SLOC: ", round(100 - sum(data$insertion - data$deletion) / sum(initial_data$insertion - initial_data$deletion) * 100, 2), "%\n"))
cat(paste("Languages: ", round(100 - length(unique(data$language)) / length(unique(initial_data$language)) * 100, 2), "%\n"))
cat(paste("Authors: ", round(100 - length(unique(data$author)) / length(unique(initial_data$author)) * 100, 2), "%\n"))
```
# Summarization
Summarize the data for the graphs and modelling as we did in the repetition:
```{r}
data$combined = data$combinedOriginal # does not matter
if (USE_AUTHORS_INSTEAD_COMMITTERS) {
data$devs = data$author
} else {
data$devs = data$committer
}
X = summarizeByLanguage(data)
Y = logTransform(X, log, log)
```
# Graphs
Let's do some graphs:
## Commits vs. Bugfixes.
```{r}
data %>% dplyr::group_by(language) %>% dplyr::summarize(commits = n(), bugfixes = sum(isbug)) -> df
ggplot(data=df, aes(x=commits, y=bugfixes)) +
geom_smooth(method='lm',size=.5, formula = y ~ x) +
geom_point() +
geom_text_repel(aes(label=language), segment.color = 'grey50', fontface = 'bold', size = 5) +
theme_light() +
theme(text = element_text(size = 15)) +
labs(y="Bug-fixing commits", x = "Commits") +
scale_y_log10(breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format(10^.x))) +
scale_x_log10(breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format(10^.x))) -> p
ggsave(paste(WORKING_DIR, "/Figures/commits.pdf", sep = ""))
print(p)
```
## Bug rate vs project age for selected languages
```{r fig.height=8, fig.width=5}
X %>%
dplyr::select(project, language, commits, bcommits,max_commit_age) %>%
mutate(br=round(bcommits/commits*100,1)) -> df
most_commits <- .9 * sum(X$commits)
df %>% arrange(desc(commits)) -> df
# find the number of project that would comprise over 90% of the entire dataset
accumulatedCommits = 0
i = 0
while (accumulatedCommits <= most_commits) {
i = i + 1
accumulatedCommits = accumulatedCommits + df[i, 3]
}
# verify that we have the correct nunber
check(sum(df[1:i,3]) > most_commits)
check(sum(df[1:i-1,3]) <= most_commits)
df[1:i,] ->most_df
most_df %>% filter(language %in% c("C", "C++","Clojure","Haskell","Objective-C","Scala")) -> most_df2
br_mean <- most_df2 %>% group_by(language) %>% summarise(br=mean(br))
age_mean <- most_df2 %>% group_by(language) %>% summarise(age=mean(max_commit_age))
ggplot(data=most_df2, aes(x=max_commit_age,y=br,color=language)) + geom_point() +
geom_hline(aes(yintercept=br, color='black'), size=.25, br_mean) +
geom_vline(aes(xintercept=age), size=.25, age_mean) +
theme_light() +
theme(text = element_text(size=20)) +
scale_x_log10(breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format(10^.x))) +
labs(x="Project age (days)", y="Bug rate (percent of commits)") +
theme(legend.position = "none") +
facet_wrap(~language, ncol=2) -> p
X %>%
mutate(br=round(bcommits/commits*100,1)) %>%
group_by(language) %>%
summarize(mbr = mean(br), mage = mean(max_commit_age)) %>%
arrange(desc(mbr)) -> mbr
ggsave(paste(WORKING_DIR, "/Figures/age.pdf", sep = ""), width=8, height=8)
print(p)
```
## Developer behavior
```{r}
data %>% group_by(author) %>% dplyr::summarize(n=n()) %>% arrange(desc(n)) -> devs
most_commits_bydev <- .9*sum(devs$n)
# find the number of developers accounting for <= 90% of the entire dataset
accumulatedCommits = 0
d = 0
while (accumulatedCommits <= most_commits_bydev) {
d = d + 1
accumulatedCommits = accumulatedCommits + devs[d, 2]
}
# verify that we have the correct nunber
check(sum(devs[1:d-1,2]) < most_commits_bydev)
check(sum(devs[1:d,2]) > most_commits_bydev)
devs_prolific <- devs$author[1:d]
# Show the number of languages the most prolific authors committed for
data %>% filter(author %in% devs_prolific) -> devs_prolific
devs_prolific = devs_prolific %>% group_by(author,language) %>% dplyr::summarize(n=n()) %>% dplyr::summarize(l=n()) %>% arrange(desc(l))
devs_prolific
hist(devs_prolific$l)
```
# Modelling
## Basic analyses & graphs of the dataset
```{r}
dimnames(X)[[2]]
pairs(X[,3:7], gap=0, pch='.')
```
Let's log transform the data:
```{r}
Y = logTransform(X)
pairs(Y[,2:6], gap=0, pch='.')
```
## Language Frequencies
Explore the relative frequencies of the languages--how many projects use them in the dataset
```{r}
sort(table(Y$language))
```
The dataset contains 17 languages (16, if we remove TypeScript). They were represented by unevenly distributed numbers of projects (from 23 for Perl to 199 for Javascript).
Explore the relationship between the languages, and other measurements
```{r}
# (devs, tins, max_commit_age, commits, bcommits)
boxplot(split(Y$lbcommits, Y$language), las=2, main="Log(bugged commits, 0 replaced with 0.5)")
par(mfrow=c(1,2), oma=c(1,1,1,1), mar=c(5,1,2,1))
boxplot(split(Y$ldevs, Y$language), las=2, main="Log(devs)")
boxplot(split(Y$ltins, Y$language), las=2, main="Log(tins)")
boxplot(split(Y$lmax_commit_age, Y$language), las=2,
main="Log(max_commit_age)")
boxplot(split(Y$lcommits, Y$language), las=2, main="Log(commits)")
```
The distribution of bug-commits varied between the languages, but so did the distributions of the other measurements. It is difficult to see direct associations between languages and bugs from bivariate plots.
## Fitting the Negative Binomial
Let's now fit the negative binomial and compare to the original paper - this is the same code as in replication:
```{r}
nbfit = glm.nb(bcommits~lmax_commit_age+ltins+ldevs+lcommits+language, contrasts = list(language = contr.Weights(Y$language)), data=Y)
nbfit_r = glm.nb(bcommits~lmax_commit_age+ltins+ldevs+lcommits+language_r, contrasts = list(language_r = contr.Weights(Y$language_r)), data=Y)
# combine them into single result table
resultWeighted = combineModels(nbfit, nbfit_r, Y$language)
juxtWeighted = merge(resultWeighted, baselineFSE_RQ1(), by = 0, all = T, sort = F)
juxtWeighted$ok = checkPValues(juxtWeighted, "FSE_pv", "pVal")
juxtWeighted
```
And we see that just cleaning the data did invalidate several of the language claims made by the original paper.
## Fitting the zero-Sum Contrasts Negative Binomial
The zero-sum contrasts are preferred to weighted contrasts for their better stability. Let's look at how they look:
```{r}
contr.sum(length(levels(Y$language)))
```
And let's fit the model:
```{r}
nbfit = glm.nb(bcommits~lmax_commit_age+ltins+ldevs+lcommits+language, contrasts = list(language = contr.sum), data=Y)
nbfit_r = glm.nb(bcommits~lmax_commit_age+ltins+ldevs+lcommits+language_r, contrasts = list(language_r = contr.sum), data=Y)
# combine them into single result table
resultZeroSum = combineModels(nbfit, nbfit_r, Y$language)
juxtZeroSum = merge(resultZeroSum, baselineFSE_RQ1(), by = 0, all = T, sort = F)
juxtZeroSum$ok = checkPValues(juxtZeroSum, "FSE_pv", "pVal")
juxtZeroSum
```
Some invalidatuions still.
## Fit Negative Binomial regression without languages and compare the full and the reduced models
```{r}
nbfit_reduced <- glm.nb(bcommits~lmax_commit_age+ltins+ldevs+lcommits, data=Y)
summary(nbfit_reduced)
```
Comparing two nested models, i.e.$H_0$: reduced model vs $H_a$: full model, using F-test:
```{r}
anova(nbfit_reduced, nbfit)
```
```{r}
cat("AIC, full:", AIC(nbfit), "\n")
cat("AIC, reduced:", AIC(nbfit_reduced), "\n")
cat("BIC, full:", BIC(nbfit), "\n")
cat("BIC, reduced:", BIC(nbfit_reduced), "\n")
```
The difference between the models is borderline.
## Adjusting for Multiple Hypothesis
The original paper just compares the p-Values against thresholds, which is not correct way to do. In the presence of multiple hypothesis, the p-Values must be adjusted. There are various ways to adjust the p-Values, namely the Bonferroni and FDR (Benjamini & Hochberg). The FDR adjustment is more permissive and the Bonferrioni is the more conservative one. What we can do now is to revisit the juxtaposed tables and add extra columns for the FDR and Bonferroni adjustments:
```{r}
# the the pValues for the predictions, not for the control variables since these are ignored by the adjustments
pValWeighted = juxtWeighted$pVal[6:(5 + length(unique(Y$language)))]
# create the empty vectors with NAs instead of pValues
fdrWeighted = rep(NA, nrow(juxtWeighted))
bonfWeighted = rep(NA, nrow(juxtWeighted))
# update the relevant parts of the vectors with the adjusted pValues
fdrWeighted[6:(5+ length(pValWeighted))] = round(p.adjust(pValWeighted, "fdr"), 3)
bonfWeighted[6:(5+ length(pValWeighted))] = round(p.adjust(pValWeighted, "bonferroni"), 3)
# add the columns to the juxtaposed tables
juxtWeighted$pVal_fdr = fdrWeighted
juxtWeighted$pVal_bonf = bonfWeighted
# now remove the old ok column and add the ok, ok_fdr and ok_bonf columns
juxtWeighted = juxtWeighted %>% dplyr::select(-(ok))
# add the columns
juxtWeighted$ok = checkPValues(juxtWeighted, "FSE_pv", "pVal")
#juxtWeighted$ok_fdr = checkPValuesLevel(juxtWeighted, "FSE_pv", "pVal_fdr", 0.01)
#juxtWeighted$ok_bonf = checkPValuesLevel(juxtWeighted, "FSE_pv", "pVal_bonf", 0.01)
juxtWeighted$ok_fdr = checkPValues(juxtWeighted, "FSE_pv", "pVal_fdr")
juxtWeighted$ok_bonf = checkPValues(juxtWeighted, "FSE_pv", "pVal_bonf")
juxtWeighted
```
With the exception of the last language (Coffeescript), the FDR and Bonferroni are the same and they actually invalidate some of the original predictions. Let's look at the zero-sum contrasts version now:
```{r}
# the the pValues for the predictions, not for the control variables since these are ignored by the adjustments
pValZeroSum = juxtZeroSum$pVal[6:(5 + length(unique(Y$language)))]
# create the empty vectors with NAs instead of pValues
fdrZeroSum = rep(NA, nrow(juxtZeroSum))
bonfZeroSum = rep(NA, nrow(juxtZeroSum))
# update the relevant parts of the vectors with the adjusted pValues
fdrZeroSum[6:(5+ length(pValZeroSum))] = round(p.adjust(pValZeroSum, "fdr"), 3)
bonfZeroSum[6:(5+ length(pValZeroSum))] = round(p.adjust(pValZeroSum, "bonferroni"), 3)
# add the columns to the juxtaposed tables
juxtZeroSum$pVal_fdr = fdrZeroSum
juxtZeroSum$pVal_bonf = bonfZeroSum
# now remove the old ok column and add the ok, ok_fdr and ok_bonf columns
juxtZeroSum = juxtZeroSum %>% dplyr::select(-(ok))
# add the columns
juxtZeroSum$ok = checkPValues(juxtZeroSum, "FSE_pv", "pVal")
#juxtZeroSum$ok_fdr = checkPValuesLevel(juxtZeroSum, "FSE_pv", "pVal_fdr", 0.01)
#juxtZeroSum$ok_bonf = checkPValuesLevel(juxtZeroSum, "FSE_pv", "pVal_bonf", 0.01)
juxtZeroSum$ok_fdr = checkPValues(juxtZeroSum, "FSE_pv", "pVal_fdr")
juxtZeroSum$ok_bonf = checkPValues(juxtZeroSum, "FSE_pv", "pVal_bonf")
juxtZeroSum
```
The situation is fairly similar here.
## Statistical significance vs practical significance, for languages
Since the number of observations is large, statistical significance can be driven by the sample size without being meaningful in practice.
Here we contrast model-based confidence intervals and prediction intervals, on the log and on the original scale
```{r}
numLanguages = length(unique(Y$language))
# Create a new data structure for prediction
newY <- NULL
for (i in 1:numLanguages) {
newY <- rbind(newY,
data.frame(language=rep(levels(Y$language)[i], 100),
ldevs=rep(median(Y$ldevs), 100),
lcommits=seq(from=min(Y$lcommits), to=max(Y$lcommits), length=100),
ltins=rep(median(Y$ltins), 100),
lmax_commit_age=rep(median(Y$lmax_commit_age), 100)))
}
newY$commits <- exp(newY$lcommits)
# Make predictions
pr_nbfit <- predict(nbfit, type="response", newdata=newY, se.fit=TRUE)
newY$pr_mean <- pr_nbfit$fit
newY$pr_se <- pr_nbfit$se.fit
```
Consider languages with the most predicted bugs (C++) and fewest predicted bugs (Clojure).
Compute the log CI for C++ and Clojure and the log Prediction CI.
Then translate the intervals on the original scale.
```{r}
axfont = 32 # size of axis title font
ticfont = 26 # size of axes' font
legfont = 28 # size of legend title
legtext = 26 # size of legend text
ptitle = 30 # size of plot title letters
getConfInterval<-function(df,lang) {
df %>%
filter(language==lang) %>%
mutate(language = lang,
x = lcommits, y = log(pr_mean),
yhigh = log(pr_mean + qnorm(1-0.01/numLanguages) * pr_se),
ylow = log(pr_mean - qnorm(1-0.01/numLanguages) * pr_se)) %>%
dplyr::select(language, x, y, ylow, yhigh)
}
dfCI <- rbind(getConfInterval(newY, "C++"), getConfInterval(newY, "Clojure"))
getPredInterval<-function(df,lang) {
df %>%
filter(language==lang) %>%
mutate(language = lang,
x = lcommits, y = log(pr_mean),
yhigh = log(qnbinom(1-0.01/numLanguages, mu= pr_mean, size= nbfit$theta) ),
ylow = log(qnbinom(0.01/numLanguages, mu=pr_mean, size=nbfit$theta))) %>%
dplyr::select(language, x, y, ylow, yhigh)
}
dfPI <- rbind(getPredInterval(newY, "C++"), getPredInterval(newY, "Clojure"))
plotIt <- function(df) {
ggplot(data = df, aes(x=x,y=y,color=language)) + geom_line() +
geom_ribbon(aes(ymin=df$ylow, ymax=df$yhigh), linetype=2, alpha=0.1) +
labs(x="log of commits", y="log of bug-fixing commits") +
theme_light() +
theme(axis.title = element_text(size=axfont),
axis.text = element_text(size=ticfont),
plot.title = element_text(hjust = 0.5, size = ptitle))
}
plotIt(dfCI) + theme(legend.position = "none") + ggtitle("(a)") -> p1
plotIt(dfPI) + theme(legend.title = element_text(size=legfont),
legend.text = element_text(size=legtext)) +
guides(colour = guide_legend(nrow = 1)) +
ggtitle("(b)") -> p2
# Grab the legend to display it separately
tmp <- ggplot_gtable(ggplot_build(p2))
l <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[l]]
legend
p2 + theme(legend.position = "none") -> p2
getConfInterval <- function(df,lang) {
df %>%
filter(language==lang) %>%
mutate(language = lang,
x = commits,
y = pr_mean,
yhigh = pr_mean + qnorm(1-0.01/numLanguages) * pr_se,
ylow = pr_mean - qnorm(1-0.01/numLanguages)* pr_se ) %>%
dplyr::select(language, x, y, ylow, yhigh)
}
dfCI <- rbind(getConfInterval(newY, "C++"), getConfInterval(newY, "Clojure"))
getPredInterval<-function(df,lang) {
df %>%
filter(language==lang) %>%
mutate(language = lang,
x = commits, y = pr_mean,
yhigh = qnbinom(1-0.01/numLanguages, mu= pr_mean, size= nbfit$theta) ,
ylow =qnbinom(0.01/numLanguages, mu=pr_mean, size=nbfit$theta)) %>%
dplyr::select(language, x,y,ylow,yhigh)
}
dfPI <- rbind(getPredInterval(newY, "C++"), getPredInterval(newY, "Clojure"))
plotIt <- function(df) {
ggplot(data = df, aes(x=x,y=y,color=language)) + geom_line() +
geom_ribbon(aes(ymin=df$ylow, ymax=df$yhigh), linetype=2, alpha=0.1) +
theme_light() +
theme(axis.title = element_text(size=axfont),
axis.text = element_text(size=ticfont),
plot.title = element_text(hjust = 0.5, size = ptitle),
legend.position = "none") +
labs(x="commits", y="bug-fixing commits")
}
plotIt(dfCI) + xlim(0,800) + ylim(0,400) + ggtitle("(c)") -> p3
plotIt(dfPI) + xlim(0,800) + ylim(0,620) + ggtitle("(d)") -> p4
```
```{r fig.width=32, fig.height=8}
pdf(paste(WORKING_DIR, "/Figures/intervals.pdf", sep = ""), width=32, height=8)
figs <- grid.arrange(arrangeGrob(p1, p2, p3, p4, nrow=1), arrangeGrob(legend), nrow=2, heights=c(4,1))
dev.off()
```
```{r}
# Plot predicted means for all the languages
par(mfrow=c(1,2))
# Log scale
plot(log(pr_mean)~lcommits,
main="log(Exp. values), all languages",
data=newY[newY$language==levels(Y$language)[1],],
type="l",
ylab="log(bugged commits)")
for (i in 2:numLanguages) {
lines(log(pr_mean)~lcommits,
data=newY[newY$language==levels(Y$language)[i],])
}
# Original scale
plot(pr_mean~commits,
main="Exp. values, all languages",
data=newY[newY$language==levels(Y$language)[1],],
type="l",
xlim=c(0, 800),
ylim=c(0,400),
ylab="bugged commits")
for (i in 2:numLanguages) {
lines(pr_mean~commits,
data=newY[newY$language==levels(Y$language)[i],])
}
```
## Add uncertainty in labels
```{r}
if (UNCERTAINTY) {
fp <- 0.36
fn <- 0.11
# Function to get parameter values
getParams <- function(Ystar) {
# Fit NB with standard contrasts
nbfit <- glm.nb(bcommits~lmax_commit_age+ltins+ldevs+lcommits+language,
contrasts = list(language = "contr.sum"), data=Ystar)
s <- summary(nbfit)$coefficients
# Fit the releveled model with standard contrasts,
# to get the parameter for Scala
nbfit_r <- glm.nb(bcommits~lmax_commit_age+ltins+ldevs+lcommits+language_r,
contrasts = list(language_r = "contr.sum"), data=Ystar)
s_r <- summary(nbfit_r)$coefficients
# Return params, incluing Scala
out <- c(s[,1], s_r[6, 1])
names(out) <- c(dimnames(s)[[1]][1:5], levels(Ystar$language))
out
}
numBootstrapIterations = 10000
# Perform sampling
set.seed(1)
paramNum <- numLanguages + 5
paramsLang <- matrix(rep(NA,paramNum*numBootstrapIterations), nrow=paramNum)
for (i in 1:numBootstrapIterations) {
# Sample rows
Ystar <- Y[sample(1:nrow(Y), replace = T),]
# Adjust for tp and fp:
# Reduce bcommits by prob fp
# Increase non-bugged commits by prob fn
tmp <- rbinom(n=nrow(Ystar), size=Ystar$bcommits, prob=1-fp) +
rbinom(n=nrow(Ystar), size=(Ystar$commits-Ystar$bcommits), prob=fn)
Ystar$bcommits <- tmp
# Get parameters
paramsLang[,i] <- getParams(Ystar)
}
}
```
To determine whether the bootstrapped values are statistically signifficant, we analyze whether the x and 1-x quantiles both have the same sign. If they do, the result is signifficant in that regard, if the do not, then the results is not statistically signifficant. Similarly to p-values, we can compare using different quantiles. The proper, conservative quantile is 0.01 divided by number of languages tested, the less conservative option is just 0.01.
```{r}
if (UNCERTAINTY) {
paramsRowNames = getModelRowNames(nbfit, Y$language)
result = data.frame(
row.names = paramsRowNames,
coef = rep(NA, length(paramsRowNames)),
se = rep(NA, length(paramsRowNames)),
sig = rep(NA, length(paramsRowNames)),
sigCons = rep(NA, length(paramsRowNames))
)
par(mfrow=c(2,4))
quant = 0.01
quantCons = 0.01 / numLanguages
for ( i in 1:length(paramsRowNames)) {
paramMean = mean(paramsLang[i,])
result$coef[[i]] = round(paramMean, digits = 2)
result$se[[i]] = round(sd(paramsLang[i,]), digits = 2)
qsigns = sign(quantile(paramsLang[i,], probs = c(quant, 1-quant, quantCons, 1-quantCons), na.rm = T))
result$sig[[i]] = qsigns[[1]] == qsigns[[2]]
result$sigCons[[i]] = qsigns[[3]] == qsigns[[4]]
# store the fake pValue here so that we can later try FDR. Since bootstrap does not really have pValues, we take the % that different result than the mean will be reported to be the pValue
if (paramMean > 0)
result$fakePVal[[i]] = sum(paramsLang[i,] < 0) / length(paramsLang[i,])
else
result$fakePVal[[i]] = sum(paramsLang[i,] > 0) / length(paramsLang[i,])
hist(paramsLang[i,],
xlab=paramsRowNames[i],
main=paste("mean =", round(mean(paramsLang[i,]), digits=2))
)
abline(v=0, col="red", lwd=2)
}
# calculate the bonferroni and FDR pVal Coefficients for the fake p values - note that we do not adjust the pValues for the control variables (top lines)
result$fakeBonf = result$fakePVal
result$fakeFdr = result$fakePVal
adjEnd = length(result$fakePVal)
adjStart = adjEnd - numLanguages
result$fakeBonf[adjStart:adjEnd] = round(p.adjust(result$fakePVal[adjStart:adjEnd], "bonferroni"), 3)
result$fakeFdr[adjStart:adjEnd] = round(p.adjust(result$fakePVal[adjStart:adjEnd], "fdr"), 3)
result$fakePValCheck = result$fakePVal <= 0.01
result$fakeBonfCheck = result$fakeBonf <= 0.01
result$fakeFdrCheck = result$fakeFdr <= 0.01
}
```
```{r}
if (UNCERTAINTY) {
result # %>% dplyr::select(sigCons, fakePVal, fakeBonf, fakeFdr)
}
```
Finally, let's juxtapose this to the baseline as usual:
```{r}
if (UNCERTAINTY) {
juxtBootstrap = merge(result, baselineFSE_RQ1(), by = 0, all = T, sort = F)
juxtBootstrap$ok = checkSignificance(juxtBootstrap, "FSE_pv", "sigCons")
juxtBootstrap
}
```
# More graphs: Bug rate over time
```{r echo=FALSE}
filter_proj <- function(df,proj,lang) {
data %>%
ungroup() %>%
filter(project == proj, language == lang) %>%
dplyr::select(commit_age, isbug) %>%
arrange(commit_age) -> bt
bt %>%
group_by(commit_age,isbug) %>%
dplyr::summarize(n = n()) %>%
spread(key = "isbug",value = "n") -> bt2
bt2 %>%
dplyr::mutate(br = round(`0`/(`0`+`1`),2),
month = as.integer(commit_age/30)) -> bt3
bt3 %>%
na.omit() %>%
dplyr::group_by(month) %>%
dplyr::summarize(n = n(), brs = sum(br), brm = brs/n) %>%
dplyr::mutate(name= paste0(proj," ",lang)) -> prj
rbind(df, prj)
}
filter_proj(NULL, "linux","C") %>%
filter_proj("mono","C#") %>%
filter_proj("homebrew","Ruby") %>%
filter_proj("WordPress","Php") %>%
filter_proj("salt","Python") %>%
filter_proj("mythtv","C++") %>%
filter_proj("jenkins","Java") %>%
filter_proj("akka","Scala") %>%
filter_proj("rabbitmq-server","Erlang") %>%
filter_proj("brackets","Javascript") %>%
filter_proj("yi","Haskell") %>%
filter_proj("overtone","Clojure") ->prj
prj %>% ggplot( aes(x = month, y = brm)) +
geom_point(size=.4) +
theme_light() +
geom_smooth(method='lm',size=.5, formula = y ~ x) +
facet_wrap( ~ name,ncol=3) + labs(x="",y="") +
xlab("Project lifetime (months)") + ylab("Percent bug-labeled commits") +
theme(strip.text.x = element_text(size = 14), text = element_text(size=13)) +
theme(text = element_text(size=20))
ggsave(paste(WORKING_DIR, "/Figures/bugspermonth.pdf", sep = ""), width = 8, height = 8, dpi = 100)
```
# Commits for top-5 projects by language
```{r fig.width = 20, fig.height = 4, echo=FALSE}
data %>% group_by(language, project) %>% dplyr::summarize(n = n()) %>% arrange(desc(n)) %>% arrange(desc(language)) %>% top_n(5, wt = n) -> projsize_ordered2
projsize_ordered2
projsize_ordered2 %>% ggplot(aes(x = reorder(factor(project), -n), y = n)) +
geom_bar(stat="identity") +
facet_grid(. ~ language, scales = "free") +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
labs(x = "Project (by language)", y = "Number of Commits") +
scale_y_continuous(labels = scales::comma)
```
# Authors
```{r}
everything %>% group_by(author, sha) %>% dplyr::summarize(n=n()) %>% group_by(author) %>% dplyr::summarise(commits = n()) -> auth
auth %>% arrange(desc(commits))
tot <- sum(auth$commits)
check( tot == 1485049)
top <- sort(auth$commits, dec=T)[1:453]
sum(top)/tot ## 46 %
everything %>% group_by(author, project) %>% dplyr::summarize(n=n()) %>%
group_by(author) %>% dplyr::summarise(proj = n()) %>% arrange(desc(proj)) -> authproj
summary(authproj) ## mean 1.2
```
# Writing the results
Finally, let's write the results of our analyses into CSV files so that they can be picked and analyzed later:
```{r}
weighted = data.frame(
coef = juxtWeighted$coef,
se = juxtWeighted$se,
pVal = round(juxtWeighted$pVal,3),
pVal_fdr = juxtWeighted$pVal_fdr,
pVal_bonf = juxtWeighted$pVal_bonf,
row.names = juxtWeighted$Row.names
)
write.csv(weighted, paste0(WORKING_DIR, "/Data/languages_weighed.csv"))
zeroSum = data.frame(
coef = juxtZeroSum$coef,
se = juxtZeroSum$se,
pVal = round(juxtZeroSum$pVal,3),
pVal_fdr = juxtZeroSum$pVal_fdr,
pVal_bonf = juxtZeroSum$pVal_bonf,
row.names = juxtZeroSum$Row.names
)
write.csv(zeroSum, paste0(WORKING_DIR, "/Data/languages_zeroSum.csv"))
# only store bootstrap if we have actually created it
if (UNCERTAINTY) {
bootstrap = data.frame(
coef = juxtBootstrap$coef,
se = juxtBootstrap$se,
sig = juxtBootstrap$sig,
sigCons = juxtBootstrap$sigCons,
row.names = juxtBootstrap$Row.names
)
write.csv(bootstrap, paste0(WORKING_DIR, "/Data/languages_bootstrap.csv"))
}
```
```{r}
remove(WORKING_DIR)
```