-
Notifications
You must be signed in to change notification settings - Fork 728
/
Copy pathmind_infer_reader.py
72 lines (67 loc) · 2.98 KB
/
mind_infer_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
from paddle.io import IterableDataset
class RecDataset(IterableDataset):
def __init__(self, file_list, config):
super(RecDataset, self).__init__()
self.file_list = file_list
self.maxlen = config.get("hyper_parameters.maxlen", 30)
self.init()
def init(self):
padding = 0
sparse_slots = "hist_item eval_item"
self.sparse_slots = sparse_slots.strip().split(" ")
self.slots = self.sparse_slots
self.slot2index = {}
self.visit = {}
for i in range(len(self.slots)):
self.slot2index[self.slots[i]] = i
self.visit[self.slots[i]] = False
self.padding = padding
def __iter__(self):
for file in self.file_list:
with open(file, "r") as rf:
for line in rf:
lines = line.strip().split(" ")
# print(lines)
output = [(i, []) for i in self.slots]
for i in lines:
slot_feasign = i.split(":")
slot = slot_feasign[0]
if slot not in self.slots:
continue
if slot in self.sparse_slots:
feasign = int(slot_feasign[1])
output[self.slot2index[slot]][1].append(feasign)
output_list = []
seq_lens = []
eval_list = []
for key, value in output:
if key == "hist_item":
seq_lens.append(min(self.maxlen, len(value)))
value = value[-self.maxlen:] + [self.padding] * \
max(0, self.maxlen - len(value))
if key == "eval_item":
value = value[:self.maxlen] + [self.padding] * \
max(0, self.maxlen - len(value))
eval_list.append(value)
continue
output_list.append(np.array(value).astype("int64"))
if len(eval_list) == 0:
continue
yield output_list + [
np.array(seq_lens).astype("int64")
] + [np.array(eval_list).astype("int64")]