-
Notifications
You must be signed in to change notification settings - Fork 728
/
Copy pathstatic_model.py
93 lines (82 loc) · 3.79 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import net
import numpy as np
class StaticModel():
"""StaticModel
"""
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters(config)
def _init_hyper_parameters(self, config):
self.item_count = config.get("hyper_parameters.item_count", None)
self.embedding_dim = config.get("hyper_parameters.embedding_dim", 64)
self.hidden_size = config.get("hyper_parameters.hidden_size", 64)
self.neg_samples = config.get("hyper_parameters.neg_samples", 100)
self.maxlen = config.get("hyper_parameters.maxlen", 30)
self.pow_p = config.get("hyper_parameters.pow_p", 1.0)
self.capsual_iters = config.get("hyper_parameters.capsual.iters", 3)
self.capsual_max_k = config.get("hyper_parameters.capsual.max_k", 4)
self.capsual_init_std = config.get("hyper_parameters.capsual.init_std",
1.0)
self.lr = config.get("hyper_parameters.optimizer.learning_rate", 0.001)
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, is_infer=False):
# print(batch_data)
if not is_infer:
hist_item = paddle.static.data(
name="hist_item", shape=[-1, self.maxlen], dtype="int64")
target_item = paddle.static.data(
name="target_item", shape=[-1, 1], dtype="int64")
seq_len = paddle.static.data(
name="seq_len", shape=[-1, 1], dtype="int64")
return [hist_item, target_item, seq_len]
else:
hist_item = paddle.static.data(
name="hist_item", shape=[-1, self.maxlen], dtype="int64")
seq_len = paddle.static.data(
name="seq_len", shape=[-1, 1], dtype="int64")
return [hist_item, seq_len]
def net(self, inputs, is_infer=False):
mind_model = net.MindLayer(self.item_count, self.embedding_dim,
self.hidden_size, self.neg_samples,
self.maxlen, self.pow_p, self.capsual_iters,
self.capsual_max_k, self.capsual_init_std)
# self.model = mind_model
if is_infer:
mind_model.eval()
user_cap, cap_weights = mind_model.forward(*inputs)
# self.inference_target_var = user_cap
fetch_dict = {"user_cap": user_cap}
return fetch_dict
hist_item, labels, seqlen = inputs
[_, sampled_logist,
sampled_labels], weight, user_cap, cap_weights, cap_mask = mind_model(
hist_item, seqlen, labels)
loss = F.softmax_with_cross_entropy(
sampled_logist, sampled_labels, soft_label=True)
self._cost = paddle.mean(loss)
fetch_dict = {"loss": self._cost}
return fetch_dict
# define optimizer
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(learning_rate=self.lr)
optimizer.minimize(self._cost)
# construct infer forward phase
def infer_net(self, inputs):
return self.net(inputs, is_infer=True)