-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathExtract.py
90 lines (67 loc) · 2.59 KB
/
Extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Load the ECG image
image_path = 'norm_2x.png'
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
# Function to extract lead signal
def extract_lead_signal(img, roi):
# Crop the image to the selected ROI
x, y, w, h = roi
lead_img = img[y:y + h, x:x + w]
# Apply Gaussian blur to reduce noise
blurred = cv2.GaussianBlur(lead_img, (5, 5), 0)
# Thresholding to create a binary image
_, binary = cv2.threshold(blurred, 128, 255, cv2.THRESH_BINARY_INV)
# Morphological operations to enhance the ECG waveform
kernel = np.ones((3, 3), np.uint8)
dilated = cv2.dilate(binary, kernel, iterations=1)
eroded = cv2.erode(dilated, kernel, iterations=1)
# Find contours
contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Create an empty list to store ECG points
ecg_points = []
# Iterate through contours to get the coordinates
for contour in contours:
for point in contour:
px, py = point[0]
ecg_points.append((x + px, y + h - py)) # Flip the y-coordinate
# Sort the points by the x-coordinate to get the correct order of the ECG waveform
ecg_points = sorted(ecg_points, key=lambda point: point[0])
return ecg_points
# Function to select ROI and extract lead signals
def select_and_extract_leads(img):
lead_data = {}
print("Select the ROI for each lead and press ENTER or SPACE.")
lead_names = ['Lead I', 'V6']
for lead in lead_names:
roi = cv2.selectROI(f"Select ROI for {lead}", img)
if roi[2] == 0 or roi[3] == 0:
print(f"Skipping {lead} due to invalid ROI.")
continue
lead_data[lead] = extract_lead_signal(img, roi)
cv2.destroyAllWindows()
return lead_data
# Extract ECG signals for each lead
lead_data = select_and_extract_leads(img)
# Convert the lead data to a DataFrame and save to CSV
all_points = []
for lead, points in lead_data.items():
for x, y in points:
all_points.append([lead, x, y])
df = pd.DataFrame(all_points, columns=['Lead', 'X', 'Y'])
output_csv_path = 'ecg_waveforms.csv'
df.to_csv(output_csv_path, index=False)
print(f'ECG waveform points saved to {output_csv_path}')
# Visualize the extracted points for each lead (optional)
plt.figure(figsize=(12, 8))
for lead, points in lead_data.items():
x = [point[0] for point in points]
y = [point[1] for point in points]
plt.plot(x, y, label=lead)
plt.title('Extracted ECG Waveforms')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()