-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisual_relationship_dataset.py
260 lines (213 loc) · 11.3 KB
/
visual_relationship_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import randomly_weighted_feature_networks as rwfn
from scipy.spatial import distance
import tensorflow as tf
import numpy as np
import csv
import os
import math
NUM_ITERATION_TRAIN = 10000
rwfn.default_layers = 200
rwfn.default_smooth_factor = 1e-15
rwfn.default_tnorm = "luk"
rwfn.default_aggregator = "hmean"
rwfn.default_positive_fact_penality = 0.
rwfn.default_clauses_aggregator = "hmean"
rwfn.default_learning_rate = 1.
data_training_dir = "data/train"
data_testing_dir = "data/test"
ontology_dir = "data/ontology"
ontology_dir = "data/ontology"
#####
predefined_weights_dir = "predefined_weights"
##### Uncomment the following lines to use predefiend weights
# ## Load weights for object classification
# with open(os.path.join(predefined_weights_dir, "rwfn_W_object.txt"), 'rb') as file_rwfn_W_object:
# predefined_W_object = np.load(file_rwfn_W_object)
# with open(os.path.join(predefined_weights_dir, "rwfn_R_object.txt"), 'rb') as file_rwfn_R_object:
# predefined_R_object = np.load(file_rwfn_R_object)
# with open(os.path.join(predefined_weights_dir, "rwfn_Rb_object.txt"), 'rb') as file_rwfn_Rb_object:
# predefined_Rb_object = np.load(file_rwfn_Rb_object)
# ## Load weights for part-of detection
# with open(os.path.join(predefined_weights_dir, "rwfn_W_predicate.txt"), 'rb') as file_rwfn_W_predicate:
# predefined_W_predicate = np.load(file_rwfn_W_predicate)
# with open(os.path.join(predefined_weights_dir, "rwfn_R_predicate.txt"), 'rb') as file_rwfn_R_predicate:
# predefined_R_predicate = np.load(file_rwfn_R_predicate)
# with open(os.path.join(predefined_weights_dir, "rwfn_Rb_predicate.txt"), 'rb') as file_rwfn_Rb_predicate:
# predefined_Rb_predicate = np.load(file_rwfn_Rb_predicate)
# ######
types = np.genfromtxt(os.path.join(ontology_dir, "classes.csv"), dtype="S", delimiter=",")
predicates = np.genfromtxt(os.path.join(ontology_dir, "predicates.csv"), dtype="S", delimiter=",")
selected_types = types[1:]
selected_predicates = predicates
number_of_features = len(types) + 4
number_of_extra_features = 7
objects = rwfn.Domain(number_of_features, label="a_bounding_box")
pairs_of_objects = rwfn.Domain(2 * number_of_features + number_of_extra_features, label="a_pair_of_bounding_boxes")
import inspect
def is_of_type(obj_type, features):
return tf.slice(features, [0, obj_type], [tf.shape(features)[0], 1])
isOfType = {}
isInRelation = {}
print objects.columns
print pairs_of_objects.columns
for t_idx, t in enumerate(selected_types):
t_p = np.where(selected_types == t)[0][0] + 1
isOfType[t] = rwfn.Predicate("is_of_type_" + t.replace(" ", "_"), objects, layers=500,
defined=lambda t_p, dom: is_of_type(t_p, dom), type_idx=t_p)
##### Uncomment the following lines to use predefiend weights
# isOfType[t] = rwfn.Predicate("is_of_type_" + t.replace(" ", "_"), objects, layers=500,
# defined=lambda t_p, dom: is_of_type(t_p, dom), type_idx=t_p,
# predefined_W=predefined_W_object, predefined_R=predefined_R_object,
# predefined_Rb=predefined_Rb_object)
for p in selected_predicates:
isInRelation[p] = rwfn.Predicate(p.replace(" ", "_") + "_relation_", pairs_of_objects, layers=1000)
##### Uncomment the following lines to use predefiend weights
# isInRelation[p] = rwfn.Predicate(p.replace(" ", "_") + "_relation_", pairs_of_objects, layers=1000,
# predefined_W=predefined_W_predicate, predefined_R=predefined_R_predicate,
# predefined_Rb=predefined_Rb_predicate)
objects_of_type = {}
objects_of_type_not = {}
object_pairs_in_relation = {}
object_pairs_not_in_relation = {}
for t in selected_types:
objects_of_type[t] = rwfn.Domain(number_of_features, label="objects_of_type_" + t.replace(" ", "_"))
objects_of_type_not[t] = rwfn.Domain(number_of_features, label="objects_of_type_not_" + t.replace(" ", "_"))
for p in selected_predicates:
object_pairs_in_relation[p] = rwfn.Domain(number_of_features * 2 + number_of_extra_features,
label="object_pairs_in_" + p.replace(" ", "_") + "_relation")
object_pairs_not_in_relation[p] = rwfn.Domain(number_of_features * 2 + number_of_extra_features,
label="object_pairs_not_in_" + p.replace(" ", "_") + "_relation")
# arguments 2 vectors with xmin,ymin,xmax,ymax coordinates (2 bounding boxes at the image)
def computing_extended_features(bb1, bb2):
# Area of bounding boxes
rect_area1 = float((bb1[-2] - bb1[-4]) * (bb1[-1] - bb1[-3]))
rect_area2 = float((bb2[-2] - bb2[-4]) * (bb2[-1] - bb2[-3]))
# Area of intersected rectangle
w_intersec = max(0, min([bb1[-2], bb2[-2]]) - max([bb1[-4], bb2[-4]]))
h_intersec = max(0, min([bb1[-1], bb2[-1]]) - max([bb1[-3], bb2[-3]]))
intersection_area = w_intersec * h_intersec
# Centroids of rectangles CR1, CR2
x_cr1 = (bb1[-2] + bb1[-4]) / 2.0
y_cr1 = (bb1[-1] + bb1[-3]) / 2.0
x_cr2 = (bb2[-2] + bb2[-4]) / 2.0
y_cr2 = (bb2[-1] + bb2[-3]) / 2.0
# Ratios with intersection area
v1 = intersection_area / rect_area1
v2 = intersection_area / rect_area2
# Ratio of bounding boxes area
v3 = rect_area1 / rect_area2
v4 = rect_area2 / rect_area1
v3_norm = (math.exp(rect_area1) - 1) / (math.exp(rect_area2 + 1) - 1)
v4_norm = (math.exp(rect_area2) - 1) / (math.exp(rect_area1 + 1) - 1)
# Euclidean distance
v5_norm = distance.euclidean([x_cr1, y_cr1], [x_cr2, y_cr2]) / math.sqrt(2)
v5 = distance.euclidean([x_cr1, y_cr1], [x_cr2, y_cr2])
# Angle between centroid1 and centroid2 antiClockWise
angle = math.degrees(math.atan2(y_cr1 - y_cr2, x_cr2 - x_cr1))
if angle >= 0:
v6 = angle
else:
v6 = 360 + angle
v7 = math.sin(math.radians(v6))
v8 = math.cos(math.radians(v6))
final_vec = [v1, v2, v3_norm, v4_norm, v5_norm, v7, v8]
return final_vec
def normalize_data(data_dir, data):
normalized_data = np.copy(data)
width_height = np.genfromtxt(os.path.join(data_dir, "width_height.csv"), delimiter=",")
normalized_data[:, -4] = normalized_data[:, -4] / width_height[:, 0]
normalized_data[:, -3] = normalized_data[:, -3] / width_height[:, 1]
normalized_data[:, -2] = normalized_data[:, -2] / width_height[:, 0]
normalized_data[:, -1] = normalized_data[:, -1] / width_height[:, 1]
return normalized_data
def get_data(train_or_test_switch, one_shot_features_flag, max_rows=10000000):
# assert train_or_test_switch == "train" or train_or_test_switch == "test"
# Fetching the data from the file system
if train_or_test_switch == "train":
data_dir = data_training_dir
if train_or_test_switch == "test":
data_dir = data_testing_dir
if train_or_test_switch == "train_reduced_70":
data_dir = "data/" + train_or_test_switch
data = np.genfromtxt(os.path.join(data_dir, "features.csv"), delimiter=",", max_rows=max_rows)
assert np.all(data[:, -4] < data[:, -2])
assert np.all(data[:, -3] < data[:, -1])
img_names = np.genfromtxt(os.path.join(data_dir, "features.csv"), delimiter=",", dtype=None, usecols=(0))
idx_types_of_data = np.genfromtxt(os.path.join(data_dir, "types.csv"), dtype="i", max_rows=max_rows)
types_of_data = types[idx_types_of_data]
triples_s_o_p = np.genfromtxt(os.path.join(data_dir, "predicates.csv"), delimiter=",", dtype="i", max_rows=max_rows)
if one_shot_features_flag:
one_shot_features = np.zeros((data.shape[0], types.shape[0]))
one_shot_features[np.arange(len(one_shot_features)), idx_types_of_data] = [1.0]
data = np.hstack((data[:, 0, np.newaxis], one_shot_features, data[:, -4:]))
data = normalize_data(data_dir, data)
idx_of_cleaned_data = np.where(np.in1d(predicates[triples_s_o_p[:, -1]], selected_predicates))
triples_s_o_p = triples_s_o_p[idx_of_cleaned_data]
pairs_of_data = np.array([np.concatenate((data[s_o_p[0]][1:], data[s_o_p[1]][1:],
computing_extended_features(data[s_o_p[0]], data[s_o_p[1]])))
for s_o_p in triples_s_o_p])
set_sub_obj = set([tuple(sub_obj) for sub_obj in triples_s_o_p[:, :2]])
unique_sub_obj = np.array([sub_obj for sub_obj in set_sub_obj])
# Grouping bbs that belong to the same picture
pics = {}
pics_triples = {}
for i in range(len(img_names)):
triple_idxs = np.where(triples_s_o_p[:, 0] == i)[0]
if img_names[i] in pics:
pics[img_names[i]].append(i)
else:
pics[img_names[i]] = [i]
if img_names[i] in pics_triples:
pics_triples[img_names[i]] = np.vstack((pics_triples[img_names[i]], triples_s_o_p[triple_idxs]))
else:
pics_triples[img_names[i]] = triples_s_o_p[triple_idxs]
cartesian_of_data = np.array(
[np.concatenate((data[i][1:], data[j][1:], computing_extended_features(data[i], data[j]))) for p in
pics for i in pics[p] for j in pics[p]])
cartesian_of_bb_idxs = np.array([[i, j] for p in pics for i in pics[p] for j in pics[p]])
print "End of loading data"
return data, pairs_of_data, types_of_data, triples_s_o_p, cartesian_of_data, pics_triples, cartesian_of_bb_idxs
def get_vrd_ontology():
is_subrelation_of = {}
has_subrelations = {}
inv_relations_of = {}
not_relations_of = {}
reflexivity = {}
symmetry = {}
range_relation = {}
domain_relation = {}
with open(os.path.join(ontology_dir, 'vrd_domain_ontology.csv')) as f:
ontology_reader = csv.reader(f)
for row in ontology_reader:
domain_relation[row[0]] = row[1:]
with open(os.path.join(ontology_dir, 'vrd_range_ontology.csv')) as f:
ontology_reader = csv.reader(f)
for row in ontology_reader:
range_relation[row[0]] = row[1:]
with open(os.path.join(ontology_dir, 'vrd_predicate_ontology.csv')) as f:
ontology_reader = csv.reader(f)
for row in ontology_reader:
is_subrelation_of[row[0]] = []
inv_relations_of[row[0]] = []
not_relations_of[row[0]] = []
for super_relation in row[1:]:
if super_relation.split()[0] == 'inv':
not_relations_of[row[0]].append(super_relation[4:])
inv_relations_of[row[0]].append(super_relation[4:])
elif super_relation.split()[0] == 'not':
not_relations_of[row[0]].append(super_relation[4:])
elif super_relation.split()[0] == 'reflex':
reflexivity[row[0]] = True
elif super_relation.split()[0] == 'irreflex':
reflexivity[row[0]] = False
elif super_relation.split()[0] == 'symm':
symmetry[row[0]] = True
elif super_relation.split()[0] == 'asymm':
symmetry[row[0]] = False
else:
is_subrelation_of[row[0]].append(super_relation)
if super_relation in has_subrelations:
has_subrelations[super_relation].append(row[0])
else:
has_subrelations[super_relation] = [row[0]]
return is_subrelation_of, has_subrelations, inv_relations_of, not_relations_of, reflexivity, symmetry, domain_relation, range_relation