-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode.py
524 lines (439 loc) · 16.5 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import xml.etree.ElementTree as ET
import collections
from nltk.stem import PorterStemmer
import re
import math
"""
The following file is my Information Retrieval System :)
For the purpouses of easier understanding of my code, I have divided the document into three
components, based on the functionalities we needed to implement:
1. Preprocessing - includes the methods responsible for preprocessing the text data
2. Indexing - includes the methods for generating the index
3. Boolean Querying - includes the methods responsible for preparation as well as
the execution of the boolean search queries.
4. Ranked Querying - includes the methods responsible for preparation as well as
the execution of the ranked search queries.
5. Control - contains the Main() method, which controls the operation of the whole
IR system by calling all of the sub-components.
"""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# *******************************************
# 1. PREPROCESSING
# *******************************************
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
This is the main preprocessing method, which calls all other
methods in this sub-component.
"""
def preprocess(text):
text = stemming(stop_words(tokenisation(text)))
return text
"""
---------------------
TOKENISATION
---------------------
"""
"""
Case Folding
"""
def case_folding(sentance):
sentance = sentance.lower()
return sentance
"""
Numbers Handling
"""
def numbers(sentance):
numbers = list(range(0, 10))
numbers_strs = [str(x) for x in numbers]
for number in numbers_strs:
sentance = sentance.replace(number, '')
return sentance
"""
Tokenisation
"""
# splitting at not alphabetic characers
def tokenisation(sentance):
sentance_list = re.split('\W+', sentance)
sentance_list_new = []
for word in sentance_list:
word_new = case_folding(numbers(word))
sentance_list_new.append(word_new)
return ' '.join(sentance_list_new)
"""
--------------------------
STOPWORD REMOVAL
--------------------------
"""
def stop_words(sentance):
stop_words = open("stop-words.txt", "r").read()
stop_words = set(stop_words.split('\n'))
sentance_lst = sentance.split()
clean_sentance_lst = []
for word in sentance_lst:
if word not in stop_words:
clean_sentance_lst.append(word)
sentance = ' '.join(clean_sentance_lst)
return sentance
"""
------------------
STEMMING
------------------
"""
def stemming(sentance):
ps = PorterStemmer()
sentance_lst = sentance.split()
sentance = ' '.join([ps.stem(x) for x in sentance_lst])
return sentance
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# *******************************************
# 2. INDEXING
# *******************************************
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def document_analysis(tree):
documents = [(document.find('DOCNO').text, preprocess(document.find('HEADLINE').text + document.find('TEXT').text).split(' '))
for document in tree.iter("DOC")]
return documents
def document_analysis_dict(documents):
docs_dict = {}
for doc in documents:
docs_dict[doc[0]] = doc[1]
return docs_dict
def indexing(documents):
index = {}
for document in documents:
for (ind,word) in enumerate(document[1]):
if word not in index:
index.update({word : {document[0] : [ind+1]}})
else:
if document[0] not in index[word]:
index[word][document[0]] = [ind+1]
else:
index[word][document[0]].append(ind+1)
index = collections.OrderedDict(sorted(index.items()))
return index
def generate_index_file(index):
output = open("index.txt","w+")
for word in index:
output.write(word+':'+str(len(index[word]))+'\n')
for occurance in index[word]:
output.write('\t'+occurance+':'+','.join([str(elem) for elem in index[word][occurance]])+'\n')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# *******************************************
# 3. BOOLEAN QUERYING
# *******************************************
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
Helper Functions
"""
def get_files(dict_docs):
files = flatten1(docID_docPosition(dict_docs))
return files
def flatten1(t):
return [item for sublist in t for item in sublist]
def docID_docPosition(word_values):
docIDs = word_values.keys()
format = []
for id in docIDs:
id_num = int(id)
pos_lst = word_values.get(id)
format_lst = [[id_num, pos] for pos in pos_lst]
format.append(format_lst)
return format
def get_document_ids(index):
document_ids = set()
for word in index:
for doc_id in index[word]:
document_ids.add(int(doc_id))
return document_ids
def remove_not(query):
query = query.lower().split(' ')
query.remove('not')
return " ".join(query)
def is_word(elem):
for char in elem:
if char.isalpha():
return True
"""
Parsing & Preprocessing Queries
"""
def read_bool_queries(file_name):
file_queries = open(file_name, 'r')
bool_queries = file_queries.readlines()
return bool_queries
def get_rid_of_number(queries):
ordered_queries_dict = collections.OrderedDict()
for i in range(0, len(queries)):
cnt = len(str(i+1))
ordered_queries_dict[queries[i][:cnt]] = queries[i][cnt+1:]
return ordered_queries_dict
def lst_queries(queries):
queries_lst = []
for i in range(0, len(queries)):
cnt = len(str(i+1))
queries_lst.append(queries[i][cnt+1:-1])
return queries_lst
"""
Classifying Queries
"""
def is_single_query(query):
query = query.lower()
lst_words = query.split(' ')
for word in lst_words:
if word in ['and', 'or']:
return False
return True
def is_phrase(query):
if query[0] == '"':
return True
def is_proximity(query):
if query[0] == '#':
return True
def is_NOT(query):
query = query.lower()
lst_words = query.split(' ')
for word in lst_words:
if word == 'not':
return True
return False
"""
Preparing Queries
"""
def prepare_phrase(phrase):
phrase = re.split('[^a-zA-Z0-9]+', phrase)
phrase = [stemming(tokenisation(numbers(case_folding(elem)))) for elem in phrase if elem != '']
return phrase
def prepare_proximity(proximity):
triple = re.split('[^a-zA-Z0-9]+', proximity)
triple = [elem for elem in triple if elem != '']
triple[1] = stemming(tokenisation(case_folding(triple[1])))
triple[2] = stemming(tokenisation(case_folding(triple[2])))
return triple
def is_AND(compound_query):
compound_query = compound_query.split(' ')
for word in compound_query:
if word == 'AND':
return True
def is_OR(compound_query):
compound_query = compound_query.split(' ')
for word in compound_query:
if word == 'OR':
return True
def prepare_compound_queries(compound_query):
# compound_query = compound_query.lower()
flag_AND = is_AND(compound_query)
flag_OR = is_OR(compound_query)
if flag_AND:
query = re.split(' AND ', compound_query)
query = [elem for elem in query if is_word(elem)]
query = [query[0], 'AND', query[1]]
return query
elif flag_OR:
query = re.split(' OR ', compound_query)
query = [elem for elem in query if is_word(elem)]
query = [query[0], 'OR', query[1]]
return query
"""
Search for Queries
"""
def search_files_word(word, index):
# search for word in the system
files = set()
# safety check that the word is in my vocab
if word in list(index.keys()):
rtrn = get_files(index.get(word))
for elem in rtrn:
files.add(elem[0])
return files
def search_files_phrase(phrase, system):
word1 = phrase[0]
files_word1 = []
if word1 in list(system.keys()):
files_word1 = get_files(system.get(word1))
word2 = phrase[1]
files_word2 = []
if word2 in list(system.keys()):
files_word2 = get_files(system.get(word2))
# compare the lists
results = set()
if len(files_word1) != 0 and len(files_word2) != 0:
for doc1 in files_word1:
for doc2 in files_word2:
if doc1[0] == doc2[0] and doc1[1] + 1 == doc2[1]:
results.add(doc1[0])
return results
def search_files_proximity(proximity, system):
proximity_indicator = int(proximity[0])
word1 = proximity[1]
files_word1 = []
if word1 in list(system.keys()):
files_word1 = get_files(system.get(word1))
word2 = proximity[2]
files_word2 = []
if word2 in list(system.keys()):
files_word2 = get_files(system.get(word2))
# compare the lists
results = []
if len(files_word1) != 0 and len(files_word2) != 0:
for doc1 in files_word1:
for doc2 in files_word2:
if doc1[0] == doc2[0] and abs(doc1[1] - doc2[1]) <= proximity_indicator:
results.append(doc1[0])
return results
def get_intersection(query1_result,query2_result):
intersection = set(query1_result).intersection(set(query2_result))
return intersection
def get_union(query1_result,query2_result):
union = set(query1_result).union(set(query2_result))
return union
def compound_query_results(compound_query_prepared,system):
flag_AND = compound_query_prepared[1] == 'AND'
flag_OR = compound_query_prepared[1] == 'OR'
if flag_AND:
query1_result = execute_query(compound_query_prepared[0],system)
query2_result = execute_query(compound_query_prepared[2],system)
result = get_intersection(query1_result,query2_result)
elif flag_OR:
query1_result = execute_query(compound_query_prepared[0],system)
query2_result = execute_query(compound_query_prepared[2],system)
result = get_union(query1_result,query2_result)
else:
result = []
return sorted(result)
"""
Execute Query
"""
def execute_query(query,system):
# check is it is a singular or a compound query
single_query = is_single_query(query)
# Singular:
if single_query:
# check if query is negated with NOT
if is_NOT(query):
document_ids = get_document_ids(system)
query = remove_not(query)
if is_phrase(query):
phrase_prepared = prepare_phrase(query)
phrase_result = (document_ids - set(search_files_phrase(phrase_prepared,system)))
return list(phrase_result)
elif is_proximity(query):
proximity_prepared = prepare_proximity(query)
proximity_result = (document_ids - set(search_files_proximity(proximity_prepared, system)))
return list(proximity_result)
else:
word_prepared = stemming(tokenisation(numbers(case_folding(query))))
word_results = (document_ids - search_files_word(word_prepared, system))
return list(word_results)
else:
if is_phrase(query):
phrase_prepared = prepare_phrase(query)
phrase_result = search_files_phrase(phrase_prepared,system)
return phrase_result
elif is_proximity(query):
proximity_prepared = prepare_proximity(query)
proximity_result = search_files_proximity(proximity_prepared, system)
return proximity_result
else:
word_prepared = stemming(tokenisation(numbers(case_folding(query))))
word_results = search_files_word(word_prepared, system)
return word_results
# Compound:
else:
prepared_compound_query = prepare_compound_queries(query)
comp_query_result = list(compound_query_results(prepared_compound_query,system))
return comp_query_result
def process_bool_querries(file_name, system):
queries = read_bool_queries(file_name)
queries = lst_queries(queries)#[stemming(tokenisation(numbers(case_folding(query)))) for query in lst_queries(queries)]
results = [execute_query(query,system) for query in queries]
return results
def generate_output_queries(queries_results):
output = open("results.boolean.txt", "w+")
for i in range(0,len(queries_results)):
for sub_result in sorted(set(queries_results[i])):
output.write(str(i+1) + ',' + str(sub_result) + '\n')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# *******************************************
# 4. RANKED QUERYING
# *******************************************
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def read_ranked_queries(file_name):
file_queries = open(file_name, 'r')
ranked_queries = lst_queries(file_queries.readlines())
ranked_queries_preprocessed = [stemming(tokenisation(stop_words(numbers(case_folding(query))))) for query in ranked_queries]
return ranked_queries_preprocessed
def process_ranked_queries(file_name, index, number_of_all_docs):
queries = read_ranked_queries(file_name)
ranked_queries = [rank_query(query, number_of_all_docs, index) for query in queries]
generate_output_ranked_queries(ranked_queries)
def rank_query(query, number_of_all_docs, index):
n = number_of_all_docs
# words in query
query = query.split(' ')
# all relevant docs
lst_docs = [(search_files_word(word,index)) for word in query]
lst_docs = set([doc for sub in lst_docs for doc in sub])
print(len(lst_docs))
# dictionary (word, df)
dict_inv_df = {}
for word in query:
if index.get(word) == None:
dict_inv_df[word] = 0
else:
dict_inv_df[word] = math.log(n / len(index.get(word)),10)
lst_tuple_score_docs = []
for doc in lst_docs:
score = 0
for term in query:
score = round(score + w_term_doc_score(term,doc,dict_inv_df,index),4)
lst_tuple_score_docs.append((score,doc))
lst_tuple_score_docs = sorted(lst_tuple_score_docs, reverse=True, key = (lambda tuple: (tuple[0], -tuple[1])))
if len(lst_tuple_score_docs) > 150:
lst_tuple_score_docs = lst_tuple_score_docs[:150]
return lst_tuple_score_docs
def w_term_doc_score(term,document,dict_inv_df,index):
inv_df = dict_inv_df[term]
tf = get_term_frequncy(term,document,index)
if tf == 0:
return 0
else:
result = (1+math.log(tf,10))*inv_df
return result
def get_term_frequncy(term,document,index):
tf = 0
if term in index.keys():
if str(document) in index[term].keys():
tf = len(index[term][str(document)])
return tf
def generate_output_ranked_queries(ranked_queries):
output = open("results.ranked.txt", "w+")
for i in range(0,len(ranked_queries)):
for article in ranked_queries[i]:
output.write(str(i+1)+','+str(article[1])+','+str(article[0])+'\n')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# *******************************************
# 5. CONTROL
# *******************************************
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def main(name_of_file):
print('Parsing the XML tree file...')
tree = ET.parse(name_of_file)
print('Preprocessing the data...')
documents = document_analysis(tree)
docs_dict = document_analysis_dict(documents)
number_of_all_documents = len(docs_dict.keys())
print('Indexing...')
index = indexing(documents)
generate_index_file(index)
print('Output successfully generated!')
print('The indexed documentation of the files can be found in index.txt')
print('\nProcessing Boolean Queries...')
results = process_bool_querries('queries.boolean.txt', index)
results = [sorted(query_results) for query_results in results]
print('**********')
print(len(results))
generate_output_queries(results)
print('Output successfully generated!')
print('Results for Boolean Quries can be found in results.boolean.txt')
print('\nProcessing Ranked Queries...')
process_ranked_queries('queries.ranked.txt',index,number_of_all_documents)
main('trec.5000.xml')