-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.js
215 lines (173 loc) · 6.59 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import './style.css';
import 'webrtc-adapter';
import firebase from 'firebase/app';
import 'firebase/firestore';
const firebaseConfig = {
// your config
apiKey: "AIzaSyA3xO6vGVRARsbyN6Ygy7pRrRL9jZR2aOA",
authDomain: "video-chat-1f4d1.firebaseapp.com",
projectId: "video-chat-1f4d1",
storageBucket: "video-chat-1f4d1.appspot.com",
messagingSenderId: "169066770490",
appId: "1:169066770490:web:8107c54a4ffddb1e644503",
measurementId: "G-0VWZWVPMMZ"
};
if (!firebase.apps.length) {
firebase.initializeApp(firebaseConfig);
}
const firestore = firebase.firestore();
const servers = {
iceServers: [
{
urls: ['stun:stun1.l.google.com:19302', 'stun:stun2.l.google.com:19302'],
},
],
iceCandidatePoolSize: 10,
};
// Global State
const pc = new RTCPeerConnection(servers);
let localStream = null;
let remoteStream = null;
// HTML elements
const webcamButton = document.getElementById('webcamButton');
const webcamVideo = document.getElementById('webcamVideo');
const callButton = document.getElementById('callButton');
const callInput = document.getElementById('callInput');
const answerButton = document.getElementById('answerButton');
const remoteVideo = document.getElementById('remoteVideo');
const hangupButton = document.getElementById('hangupButton');
// 1. Setup media sources
webcamButton.onclick = async () => {
localStream = await navigator.mediaDevices.getUserMedia({ video: true, audio: true });
remoteStream = new MediaStream();
// Push tracks from local stream to peer connection
localStream.getTracks().forEach((track) => {
pc.addTrack(track, localStream);
});
// Pull tracks from remote stream, add to video stream
pc.ontrack = (event) => {
event.streams[0].getTracks().forEach((track) => {
remoteStream.addTrack(track);
});
};
webcamVideo.srcObject = localStream;
remoteVideo.srcObject = remoteStream;
callButton.disabled = false;
answerButton.disabled = false;
webcamButton.disabled = true;
};
// 2. Create an offer
callButton.onclick = async () => {
// Reference Firestore collections for signaling
const callDoc = firestore.collection('calls').doc();
const offerCandidates = callDoc.collection('offerCandidates');
const answerCandidates = callDoc.collection('answerCandidates');
callInput.value = callDoc.id;
// Get candidates for caller, save to db
pc.onicecandidate = (event) => {
event.candidate && offerCandidates.add(event.candidate.toJSON());
};
// Create offer
const offerDescription = await pc.createOffer();
await pc.setLocalDescription(offerDescription);
const offer = {
sdp: offerDescription.sdp,
type: offerDescription.type,
};
await callDoc.set({ offer });
// Listen for remote answer
callDoc.onSnapshot((snapshot) => {
const data = snapshot.data();
if (!pc.currentRemoteDescription && data?.answer) {
const answerDescription = new RTCSessionDescription(data.answer);
pc.setRemoteDescription(answerDescription);
}
});
// When answered, add candidate to peer connection
answerCandidates.onSnapshot((snapshot) => {
snapshot.docChanges().forEach((change) => {
if (change.type === 'added') {
const candidate = new RTCIceCandidate(change.doc.data());
pc.addIceCandidate(candidate);
}
});
});
hangupButton.disabled = false;
};
// 3. Answer the call with the unique ID
answerButton.onclick = async () => {
const callId = callInput.value;
const callDoc = firestore.collection('calls').doc(callId);
const answerCandidates = callDoc.collection('answerCandidates');
const offerCandidates = callDoc.collection('offerCandidates');
pc.onicecandidate = (event) => {
event.candidate && answerCandidates.add(event.candidate.toJSON());
};
const callData = (await callDoc.get()).data();
const offerDescription = callData.offer;
await pc.setRemoteDescription(new RTCSessionDescription(offerDescription));
const answerDescription = await pc.createAnswer();
await pc.setLocalDescription(answerDescription);
const answer = {
type: answerDescription.type,
sdp: answerDescription.sdp,
};
await callDoc.update({ answer });
offerCandidates.onSnapshot((snapshot) => {
snapshot.docChanges().forEach((change) => {
console.log(change);
if (change.type === 'added') {
let data = change.doc.data();
pc.addIceCandidate(new RTCIceCandidate(data));
}
});
});
};
// Load the TensorFlow.js library
import * as tf from '@tensorflow/tfjs';
// Load the Teachable Machine model
const URL = "https://teachablemachine.withgoogle.com/models/AA7CGSTNt/";
// const URL = "https://teachablemachine.withgoogle.com/models/cqbb-nRkh/";
const modelUrl = URL + "model.json";
const metadataURL = URL + "metadata.json";
async function loadModel() {
const model = await tf.loadLayersModel(modelUrl);
console.log('Model Loaded');
const metadata = await fetch(metadataURL).then((res) => res.json());
console.log(metadata);
navigator.mediaDevices.getUserMedia({ video: true, audio: false })
.then((stream) => {
const videoElement = document.getElementById('remoteVideo');
videoElement.srcObject = stream;
videoElement.play();
setInterval(async () => {
const canvasElement = document.createElement('canvas');
const canvasContext = canvasElement.getContext('2d');
canvasElement.width = videoElement.videoWidth;
canvasElement.height = videoElement.videoHeight;
canvasContext.drawImage(videoElement, 0, 0, canvasElement.width, canvasElement.height);
const image = canvasContext.getImageData(0, 0, canvasElement.width, canvasElement.height);
// Resize the image to the expected size of the model
const tensor = tf.browser.fromPixels(image).resizeNearestNeighbor([224, 224]).toFloat();
const offset = tf.scalar(127.5);
const normalized = tensor.sub(offset).div(offset);
const batched = normalized.reshape([1, 224, 224, 3]);
// Predict the class probabilities using the model
const output = await model.predict(batched);
const predictions = await output.data();
console.log(predictions);
// const labelIndex = tf.argMax(output, { axis: 1 }).dataSync()[0];
const labelIndex = tf.argMax(output, 1).dataSync()[0];
const label = metadata.labels[labelIndex];
console.log(label);
let translatedText = document.getElementById('translatedText').innerHTML = label;
// Cleanup
tensor.dispose();
offset.dispose();
normalized.dispose();
batched.dispose();
tf.dispose([output, predictions]);
}, 1000 / 30);
});
}
loadModel();