-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_summary.py
146 lines (124 loc) · 5.95 KB
/
generate_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import os
import yaml
from omegaconf import OmegaConf
from tqdm import tqdm
def split_weather_and_time_of_day(weather_config):
"""
Splits the weather_config string into weather and time of day
:param weather_config: str
:return: str, str
"""
time_of_day = weather_config.split("_")[-1]
weather = weather_config[:-(len(time_of_day) + 1)]
return weather, time_of_day
def generate_summary(path):
"""
Generates the summary yaml for the scenario located at the given path. The summary file contains all necessary
information to generate plots and speeds up their generation afterwards
:param path: os.path
Path to the scenario folder whose summary is being generated
"""
scenario_label = path.split("/")[-1]
folders = os.listdir(path)
folders.sort()
data_protocol_path = os.path.join(path, "data_protocol.yaml")
data_protocol = OmegaConf.load(data_protocol_path)
pov_ids = folders[:5]
folder_path = os.path.join(path, pov_ids[2])
yaml_frames = [file
for file in os.listdir(folder_path)
if (file.endswith("yaml") and ("_" not in file))]
yaml_frames.sort()
weather, time_of_day = split_weather_and_time_of_day(data_protocol["dataset_config"]["weather"])
num_spawn_points = len(data_protocol["scenario"]["rsu_list"]) + 2 * len(
data_protocol["scenario"]["single_cav_list"])
# scenario information to be save in the summary file
summary = {
"simulation": scenario_label,
"scenario": data_protocol["dataset_config"]["scenario"],
"weather": weather,
"time_of_day": time_of_day,
"density": data_protocol["dataset_config"]["density"],
"num_frames": len(yaml_frames),
"num_vehicles": round(data_protocol["scenario"]["num_vehicles"] * num_spawn_points *
data_protocol["density"]["vehicle_multiplier"]),
"num_walkers": round(data_protocol["scenario"]["num_walkers"] * data_protocol["density"]["walker_multiplier"])
}
frames_dict = {}
for yaml_frame in tqdm(yaml_frames):
# iterate through the frames in the scenario
frame_number = yaml_frame.split(".")[0]
pov_frame_paths = [os.path.join(path, pov_id, yaml_frame) for pov_id in pov_ids]
pov_yamls = [OmegaConf.load(pov_frame_path) for pov_frame_path in pov_frame_paths]
pov_speeds = [pov_yaml["ego_speed"] for pov_yaml in pov_yamls]
# index 2 is ego, so it goes last in merge list so that it can override values
merged_yamls = OmegaConf.merge(pov_yamls[0], pov_yamls[1], pov_yamls[3], pov_yamls[4], pov_yamls[2])
# Number of walkers might be 0, so key might not exist on dictionary
if "walkers" in pov_yamls[2]:
num_walkers = len(merged_yamls["walkers"])
objs = ["vehicles", "walkers"]
ego_objs = OmegaConf.merge(pov_yamls[2]["vehicles"], pov_yamls[2]["walkers"])
else:
num_walkers = 0
objs = ["vehicles"]
ego_objs = pov_yamls[2]["vehicles"]
# information on the current frame to be save to the summary: speeds of cavs and total number of ground truths
frame_dict = {
"cav_speeds": {
"ego": pov_speeds[2],
"cav1": pov_speeds[3],
"cav2": pov_speeds[4]
},
"num_annotations": len(merged_yamls["vehicles"]) + num_walkers
}
for obj in objs:
# iterates through detected objects, saving their ground truths to the summary
for obj_id in merged_yamls[obj]:
if str(obj_id) in pov_ids:
# ignore cavs
continue
elif obj_id in ego_objs:
# Vehicle/walker detected by ego
classe = merged_yamls[obj][obj_id]["class"] if "class" in merged_yamls[obj][obj_id] else "walker"
frame_dict.update({obj_id: {
"class": classe,
"speed": merged_yamls[obj][obj_id]["speed"],
"distance_to_ego": merged_yamls[obj][obj_id]["dist"],
"angle_to_ego": merged_yamls[obj][obj_id]["relative_angle"]
}})
else:
# Vehicle/walker out of range from ego
classe = merged_yamls[obj][obj_id]["class"] if "class" in merged_yamls[obj][obj_id] else "walker"
frame_dict.update({obj_id: {
"class": classe,
"speed": merged_yamls[obj][obj_id]["speed"]
}})
frames_dict.update({int(frame_number): frame_dict})
summary.update({"frames": frames_dict})
summary_path = os.path.join(path, "summary.yaml")
with open(summary_path, "w") as outfile:
yaml.dump(summary, outfile, default_flow_style=False, sort_keys=False)
# create an argument parser
parser = argparse.ArgumentParser(description="Adver-City dataset scenario summary generator.")
# add arguments to the parser
parser.add_argument('-p', "--path", type=str,
help='Path of scenario. Eg: data_dumping/2024_06_14_12_47_41/ui_cd_s')
parser.add_argument("-a", "--all", type=bool,
help="Boolean to generate summary of all simulations in a folder.")
# parse the arguments and return the result
opt = parser.parse_args()
arg_path = opt.path
if opt.all:
# if "all" flag is active, lists scenario folders within path and generates summaries for all of them
simulation_paths = os.listdir(arg_path)
simulation_paths.sort()
for simulation_path in simulation_paths:
# iterates through simulation folders
print(f"Generating {simulation_path} summary...")
path = os.path.join(arg_path, simulation_path)
generate_summary(path)
else:
# otherwise, just generate the summary for the folder in the given path
print("Generating summary...")
generate_summary(arg_path)