-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathExploratory_Data_Analysis.Rmd
252 lines (221 loc) · 6.9 KB
/
Exploratory_Data_Analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
title: "BST260_Final_Project"
author: "Qingru Xu"
date: "2021/11/30"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
```
### Exploratory Data Analysis
```{r}
library(readr)
library(dplyr)
library(tidyr)
library(ggplot2)
library(dplyr)
library(gridExtra)
library(GGally)
```
```{r}
data <- read_csv("music_genre.csv")
```
#### Clean Data
```{r}
#Look at data
head(data)
summary(data)
dim(data)
```
```{r}
#Check and remove NAs
data[!complete.cases(data),]
data_clean <- na.omit(data)
dim(data_clean)
```
```{r}
#Check and remove duplicates
data_clean[duplicated(data_clean),]#all NAs, so remove
```
```{r}
#Turn variables into right types
data_clean <- data_clean %>% mutate(
key = as.factor(key),
mode = as.factor(mode),
obtained_date = as.factor(obtained_date),
music_genre = as.factor(music_genre),
tempo = as.numeric(tempo)
)
```
```{r}
#check and remove NAs introduced by tempo error
data_clean[!complete.cases(data_clean),]
data_clean <- na.omit(data_clean)
dim(data_clean)
```
```{r}
#treat date variable
unique(data_clean$obtained_date)
#meaningless for prediction, so remove the column
data_clean <- data_clean %>% select(-c("obtained_date"))
#remove rows with duration_ms variable with -1
data_clean <- data_clean[-which(data_clean$duration_ms == -1),]
```
```{r}
#Look at data
summary(data_clean)
dim(data_clean)
```
#### Data visualization
```{r}
#visualize artist_name top 10
Artist <- as.data.frame(table(data_clean$artist_name)) %>%
arrange(desc(Freq))
head(Artist)#first row empty filed should be removed
Artist <- Artist[-1,]
head(Artist)
top10_Artist <- Artist[c(1:10),]
top10_Artist$Var1 <- factor(top10_Artist$Var1, levels = rev(top10_Artist$Var1))
top10_Artist %>%
ggplot()+
geom_histogram(aes(x = Var1, y = Freq),stat = "identity")+
coord_flip()+
ylab("Number of songs per artist")+
xlab("Artist name")+
ggtitle("Top 10 Artists with the most number of songs")+
theme_bw()
```
```{r}
#instance_id and track_name (unique) are useless for prediction and artist_name too complicated, remove
data_clean <- data_clean %>% select(-c("instance_id","artist_name","track_name"))
```
```{r}
#Categorical Variable visualization
data_clean %>%
gather(predictor, value, c(key, mode, music_genre)) %>%
ggplot()+
geom_bar(aes(x=value), stat = "count")+
facet_wrap(~ predictor,
scales = "free",
labeller =
as_labeller(c("key"="Key",
"mode" = "Mode",
"music_genre" = "Music Genre")))+
xlab(NULL)+ylab(NULL)+theme_bw()+
theme(axis.text.x = element_text(angle = 45,hjust=1))+
ggtitle("Categorical Variables Distribution")
```
```{r}
#Continuous variables visualization
'%!in%' <- function(x,y)!('%in%'(x,y))
names <- colnames(data_clean)[colnames(data_clean)%!in% c("key", "mode", "music_genre")]
data_clean %>%
gather(predictor, value, names) %>%
ggplot()+
geom_histogram(aes(x=value))+
facet_wrap(~ predictor,
scales = "free",labeller =
as_labeller(c("popularity"="Popularity",
"acousticness" = "Acousticness",
"danceability" = "Danceability",
"duration_ms" = "Duration (ms)",
"energy" = "Energy",
"instrumentalness" = "Instrumentalness",
"liveness" = "Liveness",
"loudness" = "Loudness",
"speechiness" = "Speechiness",
"tempo" = "Tempo",
"valence" = "Valence")))+
xlab(NULL)+ylab(NULL)+theme_bw()+
ggtitle("Continuous Variables Distribution")
```
```{r}
#Categorical Variable Distribution with Popularity
data_clean %>%
gather(predictor, value, c(key, mode, music_genre)) %>%
ggplot()+
geom_boxplot(aes(x=value, y = popularity))+
facet_wrap(~ predictor,
scales = "free",
labeller =
as_labeller(c("key"="Key",
"mode" = "Mode",
"music_genre" = "Music Genre")))+
xlab(NULL)+ylab("Popularity")+theme_bw()+
theme(axis.text.x = element_text(angle = 45,hjust=1))+
ggtitle("Categorical Variables Distribution with Popularity")
```
```{r}
#Continuous Variables Distribution with Popularity
data_clean %>%
gather(predictor, value, names[-1]) %>%
ggplot()+
geom_point(aes(x=value, y = popularity), size = 0.001)+
facet_wrap(~ predictor,
scales = "free",
labeller =
as_labeller(c(
"acousticness" = "Acousticness",
"danceability" = "Danceability",
"duration_ms" = "Duration (ms)",
"energy" = "Energy",
"instrumentalness" = "Instrumentalness",
"liveness" = "Liveness",
"loudness" = "Loudness",
"speechiness" = "Speechiness",
"tempo" = "Tempo",
"valence" = "Valence")))+
xlab(NULL)+ylab("Popularity")+theme_bw()+
ggtitle("Continuous Variables Distribution with Popularity")
```
```{r}
#Continuous Variables Distribution with Mode
data_clean %>%
gather(predictor, value, names) %>%
ggplot()+
geom_boxplot(aes(x=mode, y = value))+
facet_wrap(~ predictor,
scales = "free_y",
labeller =
as_labeller(c("popularity"="Popularity",
"acousticness" = "Acousticness",
"danceability" = "Danceability",
"duration_ms" = "Duration (ms)",
"energy" = "Energy",
"instrumentalness" = "Instrumentalness",
"liveness" = "Liveness",
"loudness" = "Loudness",
"speechiness" = "Speechiness",
"tempo" = "Tempo",
"valence" = "Valence")))+
xlab("Mode")+ylab(NULL)+theme_bw()+
ggtitle("Continuous Variables Distribution with Mode")
```
```{r}
#Continuous Variable Distribution with Music Genre
data_clean %>%
gather(predictor, value, names) %>%
ggplot()+
geom_boxplot(aes(x=music_genre, y = value))+
facet_wrap(~ predictor,
scales = "free_y",
labeller =
as_labeller(c("popularity"="Popularity",
"acousticness" = "Acousticness",
"danceability" = "Danceability",
"duration_ms" = "Duration (ms)",
"energy" = "Energy",
"instrumentalness" = "Instrumentalness",
"liveness" = "Liveness",
"loudness" = "Loudness",
"speechiness" = "Speechiness",
"tempo" = "Tempo",
"valence" = "Valence")))+
xlab("Music Genre")+ylab(NULL)+theme_bw()+
theme(axis.text.x = element_text(angle = 60,hjust=1))+
ggtitle("Continuous Variables Distribution with Music Genre")
```
#### Save Cleaned Data
```{r}
saveRDS(data_clean, "music_genre_clean.rds")
```