-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtorch-common.sh
71 lines (60 loc) · 2.84 KB
/
torch-common.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Cores used during compilation
# Use this logic, or simply set the JOBS variable manually
# If you are sharing a box, be mindful of not choking the computer during compilation
CORES_PER_SOCKET=$(lscpu | grep 'Core(s) per socket' | awk '{print $NF}')
NUMBER_OF_SOCKETS=$(lscpu | grep 'Socket(s)' | awk '{print $NF}')
export NCORES=$((CORES_PER_SOCKET * NUMBER_OF_SOCKETS))
export MAX_JOBS=${MAX_JOBS:-$NCORES}
# Compilation type
export CMAKE_BUILD_TYPE=Release
# CMAKE_BUILD_TYPE=RelWithDebInfo gives you line numbers on gdb,
# but makes the symbol loading phase in gdb and the linking phase in compilation much slower.
# CUDA
export USE_CUDA=1
if [ -z "$TORCH_CUDA_ARCH_LIST" ]; then
:
elif [[ $(hostname) = qgpu* ]]; then
export TORCH_CUDA_ARCH_LIST="7.5" # qgpu server
else
export TORCH_CUDA_ARCH_LIST="8.0" # A100 architecture
fi
# Faster recompilation
export USE_PRECOMPILED_HEADERS=1
export USE_PER_OPERATOR_HEADERS=1
export CCACHE_COMPRESS=true
export CCACHE_SLOPPINESS=pch_defines,time_macros # Necessary for precompiled headers
# General utils
export USE_KINETO=1 # profiler
export USE_CUDNN=1 # CNNs
export USE_FBGEMM=1 # GEMMs
# Don't build what we don't need
export BUILD_TEST=0 # C++ tests
export BUILD_CAFFE2=0 # caffe2
export BUILD_CAFFE2_OPS=0 # caffe2
export USE_DISTRIBUTED=0 # distributed
export USE_NCCL=0 # distributed
export USE_GLOO=0 # distributed
export USE_QNNPACK=0 # quantized
export USE_XNNPACK=0 # quantized
# Disable these unless you are going to benchmark them
export USE_FLASH_ATTENTION=0
export USE_MEM_EFF_ATTENTION=0
# cmake from conda
export CMAKE_PREFIX_PATH=$CONDA_PREFIX
# Use cudatoolkit from conda (see pytorch-dev.yaml)
# If you have it installed system-wide (e.g. in qgpu) and you want to use it,
# point CUDA_PATH and CMAKE_CUDA_COMPILER to the right folder
export CUDA_PATH=$CONDA_PREFIX
export CUDA_HOME=$CUDA_PATH
export CMAKE_CUDA_COMPILER=$CONDA_PREFIX/bin/nvcc
# Note: targets/x86_64-linux is added because of the use of deprecated find_package(CUDA).
# Usually `cuda_runtime.h` is found in CUDA_HOME and find_package(CUDA) expects that.
# However with conda, cuda headers are in $CUDA_HOME/targets/x86_64-linux/include
# instead of $CUDA_HOME/include to avoid cloberring the top level directory with names like
# mma.h. The new way `enable_languages(CUDA)` knows about this, but pytorch uses both
# mechanisms.
export CUDA_INC_PATH="$CUDA_PATH/targets/x86_64-linux/include"
# ccache
export CMAKE_C_COMPILER_LAUNCHER=ccache
export CMAKE_CXX_COMPILER_LAUNCHER=ccache
export CMAKE_CUDA_COMPILER_LAUNCHER=ccache