forked from Richar-Du/Opt-Visor
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodeling_mm.py
350 lines (315 loc) · 16.3 KB
/
modeling_mm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import logging
from typing import List, Optional
from transformers.configuration_utils import PretrainedConfig
from transformers import Qwen2ForCausalLM
from transformers import SiglipImageProcessor, SiglipVisionModel, SiglipVisionConfig
import torch
import torch.nn as nn
import math
from transformers import PreTrainedModel
from data_processor import MMInferenceProcessor
from projector import MeanPoolingProjector, TemporalPoolingProjector
logger = logging.getLogger(__name__)
class MMConfig(PretrainedConfig):
model_type = "mm"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
language_model_name_or_path=None,
vision_model_name_or_path=None,
mm_projector_type="mlp",
image_aspect_ratio="square",
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.language_model_name_or_path = language_model_name_or_path
self.vision_model_name_or_path = vision_model_name_or_path
self.mm_projector_type = mm_projector_type
self.image_aspect_ratio = image_aspect_ratio
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def set_additional_attributes(self, additional_attributes):
if additional_attributes and isinstance(additional_attributes, dict):
for attr, value in additional_attributes.items():
print(attr, value)
setattr(self, attr, value)
def _rope_scaling_validation(self):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
class MMForCausalLM(PreTrainedModel):
config_class = MMConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = []
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def __init__(self, config, load_checkpoint=False):
super().__init__(config)
self.use_varlen = False
assert self.config.image_aspect_ratio in {"square"}
logger.info('#'*100)
logger.info(f'Utilize {self.config.image_aspect_ratio}')
logger.info('#'*100)
self.left_padding = not self.training
if load_checkpoint:
self.model = Qwen2ForCausalLM.from_pretrained(self.config.language_model_name_or_path, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16)
else:
self.model = Qwen2ForCausalLM._from_config(self.config, attn_implementation="flash_attention_2")
self._no_split_modules = self.model._no_split_modules
self.get_vision_model(config, load_checkpoint)
def get_vision_model(self, config, load_checkpoint):
self.image_processor = SiglipImageProcessor.from_pretrained(self.config.vision_model_name_or_path)
if load_checkpoint:
self.vision_model = SiglipVisionModel.from_pretrained(self.config.vision_model_name_or_path)
self.vision_config = self.vision_model.config
else:
self.vision_config = SiglipVisionConfig.from_pretrained(self.config.vision_model_name_or_path)
self.vision_model = SiglipVisionModel._from_config(self.vision_config)
self.vision_model._no_split_modules = []
size = self.image_processor.size
if not isinstance(size, int):
if "height" in size:
assert size["height"] == size["width"], "need to be square, but image_processor's size is not"
size = size["height"]
elif "shortest_edge" in size:
size = size["shortest_edge"]
self.image_size = size
self.patch_size = self.config.pesudo_patch_size
modules = [nn.Linear(self.config.visual_hidden_dim, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size, bias=False)]
kernel = self.config.pooling_kernel
if self.config.mm_projector_type == "mlp":
self.mm_projector = nn.Sequential(*modules)
self.num_queries = math.floor((self.config.pesudo_img_size / (self.config.pesudo_patch_size )))**2
self.feature_map_size = int(self.config.pesudo_img_size / (self.config.pesudo_patch_size))
elif "mean" in str(self.config.mm_projector_type).lower():
if "after" in str(self.config.mm_projector_type).lower():
self.mm_projector = MeanPoolingProjector(input_dim=self.config.visual_hidden_dim, output_dim=config.hidden_size, kernel=kernel, pool_after=True)
else:
self.mm_projector = MeanPoolingProjector(input_dim=self.config.visual_hidden_dim, output_dim=config.hidden_size, kernel=kernel)
self.feature_map_size = int(self.config.pesudo_img_size / (self.config.pesudo_patch_size))
self.num_queries = math.floor((self.config.pesudo_img_size / (self.config.pesudo_patch_size * kernel)))**2
elif "temp" in str(self.config.mm_projector_type).lower():
if "after" in str(self.config.mm_projector_type).lower():
self.mm_projector = TemporalPoolingProjector(input_dim=self.config.visual_hidden_dim, output_dim=config.hidden_size, spatial_kernel=kernel, pool_after=True)
else:
self.mm_projector = TemporalPoolingProjector(input_dim=self.config.visual_hidden_dim, output_dim=config.hidden_size, spatial_kernel=kernel)
self.feature_map_size = int(self.config.pesudo_img_size / (self.config.pesudo_patch_size))
self.num_queries = math.floor((self.config.pesudo_img_size / (self.config.pesudo_patch_size * kernel)))**2
embed_std = 1 / torch.sqrt(torch.tensor(config.hidden_size, dtype=torch.float32))
self.image_newline = nn.Parameter(torch.randn(config.hidden_size) * embed_std.to(self.model.dtype))
def bind_processor(self, tokenizer, device=None, config=None, **kwargs):
tokenizer.padding_side = "left"
tokenizer.truncation_side = "left"
return MMInferenceProcessor(
tokenizer=tokenizer,
image_processor=self.image_processor,
dtype=self.model.dtype,
device=device if device else self.model.device,
config=config,
**kwargs
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
batch_image_patch: Optional[torch.Tensor] = None,
batch_image_size: Optional[torch.Tensor] = None,
batch_mm_obj_type: Optional[str] = None,
batch_mm_obj_image_aspect_ratio: Optional[str] = None,
img_attention_mask_list: Optional[List[torch.FloatTensor]] = None,
return_dict: Optional[bool] = None,
):
if inputs_embeds is None:
(
input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
labels,
cur_len_list,
) = self._merge_input_ids_with_image_features(
input_ids,
attention_mask,
position_ids,
past_key_values,
labels,
images,
batch_image_patch,
batch_image_size,
batch_mm_obj_type,
batch_mm_obj_image_aspect_ratio,
img_attention_mask_list=img_attention_mask_list if img_attention_mask_list is not None else None,
varlen=self.use_varlen,
left_padding=self.left_padding
)
kwargs = {}
if cur_len_list is not None:
kwargs["seqlens"] = cur_len_list
return self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
def mm_resolution_merge(self, image_features, batch_image_patch, batch_image_size, batch_mm_obj_type, batch_mm_obj_image_aspect_ratio, img_attention_mask_list=None):
total_img_num = 0
result_image_features = []
result_image_tokens = []
for i, (image_patch, image_size, mm_obj_type, mm_obj_image_aspect_ratio) in enumerate(zip(batch_image_patch, batch_image_size, batch_mm_obj_type, batch_mm_obj_image_aspect_ratio)):
image_size = tuple(x.item() for x in image_size.cpu())
image_patch = tuple(x.item() for x in image_patch.cpu())
cur_img_num = image_patch[0] * image_patch[1]
cur_image_features = image_features[total_img_num:total_img_num+cur_img_num]
total_img_num += cur_img_num
if 'square' in mm_obj_image_aspect_ratio:
if mm_obj_type == 'I':
cur_image_features = self.mm_projector(cur_image_features).to(image_features.device)
if self.image_newline == None:
cur_image_features = cur_image_features[0]
else:
cur_image_features = torch.cat((cur_image_features[0], self.image_newline[None][0:0]))
result_image_features.append(cur_image_features)
result_image_tokens.append(cur_image_features.shape[0])
result_image_features = torch.cat(result_image_features, dim=0)
result_image_tokens = torch.tensor(result_image_tokens)
return result_image_features, result_image_tokens
def _merge_input_ids_with_image_features(
self, input_ids, attention_mask, position_ids, past_key_values, labels, images, batch_image_patch, batch_image_size,
batch_mm_obj_type, batch_mm_obj_image_aspect_ratio,
varlen=False, left_padding=True, img_attention_mask_list=None,
):
if input_ids.shape[1] == 1 and images is None:
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
if not self.training:
attention_mask = None
return input_ids, attention_mask, position_ids, past_key_values, None, labels, None
image_features = self.vision_model(images, output_hidden_states=True).hidden_states[-2]
if not "siglip" in self.config.vision_model_name_or_path.lower():
image_features = image_features[:, 1:]
image_features, batch_image_tokens = self.mm_resolution_merge(image_features, batch_image_patch, batch_image_size, batch_mm_obj_type, batch_mm_obj_image_aspect_ratio)
combine_mask_with_pad = input_ids.clone()
combine_mask_with_pad = torch.clamp(combine_mask_with_pad, min=0)
combine_embedding = self.model.model.embed_tokens(combine_mask_with_pad)
special_image_token_mask = input_ids == -1
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
image_feature_idx = torch.nonzero(special_image_token_mask)
if num_special_image_tokens.sum() > 0:
combine_embedding.index_put_([image_feature_idx[:, 0], image_feature_idx[:, 1]], image_features)
else:
combine_embedding[0] = torch.cat([combine_embedding[0], image_features[0:0]])
final_embedding = combine_embedding
batch_size, final_token_length = input_ids.shape
final_attention_mask = torch.ones(batch_size, final_token_length, dtype=torch.bool, device=input_ids.device)
final_attention_mask[(input_ids == self.config.pad_token_index)] = 0
token_length_list = torch.sum((final_attention_mask != self.config.pad_token_index), dim=-1)
final_labels = labels
nb_image_pad = final_token_length - token_length_list
if not left_padding:
nb_image_pad.zero_()
return None, final_attention_mask, None, None, final_embedding, final_labels, None
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, past_key_values=None, **kwargs):
images = kwargs.pop("images", None)
batch_image_patch = kwargs.pop("batch_image_patch", None)
batch_image_size = kwargs.pop("batch_image_size", None)
batch_mm_obj_type = kwargs.pop("batch_mm_obj_type", None)
batch_mm_obj_image_aspect_ratio = kwargs.pop("batch_mm_obj_image_aspect_ratio", None)
img_attention_mask_list = kwargs.pop("img_attention_mask_list", None)
if past_key_values:
input_ids = input_ids[:, -1:]
images = None
batch_image_patch = None
batch_image_size = None
batch_mm_obj_type = None
batch_mm_obj_image_aspect_ratio = None
img_attention_mask_list = None
model_inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"images": images,
"batch_image_patch": batch_image_patch,
"batch_image_size": batch_image_size,
"batch_mm_obj_type": batch_mm_obj_type,
"batch_mm_obj_image_aspect_ratio": batch_mm_obj_image_aspect_ratio,
"img_attention_mask_list": img_attention_mask_list,
}
return model_inputs