forked from Sherry-XLL/TedRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtedrec_ml-1m.out
338 lines (332 loc) · 16.9 KB
/
tedrec_ml-1m.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
command line args [-d ml-1m] will not be used in RecBole
08 Feb 13:46 INFO
General Hyper Parameters:
gpu_id = 0
use_gpu = True
seed = 2020
state = INFO
reproducibility = True
data_path = dataset/ml-1m
checkpoint_dir = saved
show_progress = False
save_dataset = False
dataset_save_path = None
save_dataloaders = False
dataloaders_save_path = None
log_wandb = False
Training Hyper Parameters:
epochs = 300
train_batch_size = 2048
learner = adam
learning_rate = 0.001
train_neg_sample_args = {'distribution': 'none', 'sample_num': 'none', 'alpha': 'none', 'dynamic': False, 'candidate_num': 0}
eval_step = 1
stopping_step = 10
clip_grad_norm = None
weight_decay = 0.0
loss_decimal_place = 4
Evaluation Hyper Parameters:
eval_args = {'split': {'LS': 'valid_and_test'}, 'order': 'TO', 'group_by': 'user', 'mode': {'valid': 'full', 'test': 'full'}}
repeatable = True
metrics = ['Recall', 'NDCG']
topk = [10, 20]
valid_metric = NDCG@10
valid_metric_bigger = True
eval_batch_size = 2048
metric_decimal_place = 4
Dataset Hyper Parameters:
field_separator =
seq_separator =
USER_ID_FIELD = user_id
ITEM_ID_FIELD = item_id
RATING_FIELD = rating
TIME_FIELD = timestamp
seq_len = None
LABEL_FIELD = label
threshold = None
NEG_PREFIX = neg_
load_col = {'inter': ['user_id', 'item_id_list', 'item_id']}
unload_col = None
unused_col = None
additional_feat_suffix = None
rm_dup_inter = None
val_interval = None
filter_inter_by_user_or_item = True
user_inter_num_interval = [0,inf)
item_inter_num_interval = [0,inf)
alias_of_user_id = None
alias_of_item_id = ['item_id_list']
alias_of_entity_id = None
alias_of_relation_id = None
preload_weight = None
normalize_field = None
normalize_all = None
ITEM_LIST_LENGTH_FIELD = item_length
LIST_SUFFIX = _list
MAX_ITEM_LIST_LENGTH = 50
POSITION_FIELD = position_id
HEAD_ENTITY_ID_FIELD = head_id
TAIL_ENTITY_ID_FIELD = tail_id
RELATION_ID_FIELD = relation_id
ENTITY_ID_FIELD = entity_id
benchmark_filename = ['train', 'valid', 'test']
Other Hyper Parameters:
worker = 0
wandb_project = recbole
shuffle = True
require_pow = False
enable_amp = False
enable_scaler = False
transform = None
numerical_features = []
discretization = None
kg_reverse_r = False
entity_kg_num_interval = [0,inf)
relation_kg_num_interval = [0,inf)
MODEL_TYPE = ModelType.SEQUENTIAL
n_layers = 2
n_heads = 2
hidden_size = 300
inner_size = 256
hidden_dropout_prob = 0.5
attn_dropout_prob = 0.5
hidden_act = gelu
layer_norm_eps = 1e-12
initializer_range = 0.02
loss_type = CE
plm_suffix = feat1CLS
plm_size = 768
adaptor_dropout_prob = 0.2
adaptor_layers = [768, 300]
temperature = 0.07
n_exps = 8
MODEL_INPUT_TYPE = InputType.POINTWISE
eval_type = EvaluatorType.RANKING
single_spec = True
local_rank = 0
device = cuda
valid_neg_sample_args = {'distribution': 'uniform', 'sample_num': 'none'}
test_neg_sample_args = {'distribution': 'uniform', 'sample_num': 'none'}
08 Feb 13:47 INFO ml-1m
The number of users: 6041
Average actions of users: 164.49850993377484
The number of items: 3417
Average actions of items: 290.85802107728335
The number of inters: 993571
The sparsity of the dataset: 95.18667604362095%
Remain Fields: ['user_id', 'item_id_list', 'item_id', 'item_length']
08 Feb 13:47 INFO [Training]: train_batch_size = [2048] train_neg_sample_args: [{'distribution': 'none', 'sample_num': 'none', 'alpha': 'none', 'dynamic': False, 'candidate_num': 0}]
08 Feb 13:47 INFO [Evaluation]: eval_batch_size = [2048] eval_args: [{'split': {'LS': 'valid_and_test'}, 'order': 'TO', 'group_by': 'user', 'mode': {'valid': 'full', 'test': 'full'}}]
08 Feb 13:47 INFO TedRec(
(item_embedding): Embedding(3417, 300, padding_idx=0)
(position_embedding): Embedding(50, 300)
(trm_encoder): TransformerEncoder(
(layer): ModuleList(
(0-1): 2 x TransformerLayer(
(multi_head_attention): MultiHeadAttention(
(query): Linear(in_features=300, out_features=300, bias=True)
(key): Linear(in_features=300, out_features=300, bias=True)
(value): Linear(in_features=300, out_features=300, bias=True)
(softmax): Softmax(dim=-1)
(attn_dropout): Dropout(p=0.5, inplace=False)
(dense): Linear(in_features=300, out_features=300, bias=True)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(out_dropout): Dropout(p=0.5, inplace=False)
)
(feed_forward): FeedForward(
(dense_1): Linear(in_features=300, out_features=256, bias=True)
(dense_2): Linear(in_features=256, out_features=300, bias=True)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.5, inplace=False)
)
)
)
)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.5, inplace=False)
(loss_fct): CrossEntropyLoss()
(plm_embedding): Embedding(3417, 768, padding_idx=0)
(item_gating): Linear(in_features=300, out_features=1, bias=True)
(fusion_gating): Linear(in_features=300, out_features=1, bias=True)
(moe_adaptor): MoEAdaptorLayer(
(experts): ModuleList(
(0-7): 8 x DTRLayer(
(dropout): Dropout(p=0.2, inplace=False)
(lin): Linear(in_features=768, out_features=300, bias=False)
)
)
)
)
Trainable parameters: 4252702
08 Feb 13:49 INFO epoch 0 training [time: 121.18s, train loss: 3031.9653]
08 Feb 13:49 INFO epoch 0 evaluating [time: 0.41s, valid_score: 0.091300]
08 Feb 13:49 INFO valid result:
recall@10 : 0.1848 recall@20 : 0.3007 ndcg@10 : 0.0913 ndcg@20 : 0.1204
08 Feb 13:49 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 13:51 INFO epoch 1 training [time: 121.52s, train loss: 2729.4560]
08 Feb 13:51 INFO epoch 1 evaluating [time: 0.40s, valid_score: 0.117000]
08 Feb 13:51 INFO valid result:
recall@10 : 0.2248 recall@20 : 0.3425 ndcg@10 : 0.117 ndcg@20 : 0.1467
08 Feb 13:51 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 13:53 INFO epoch 2 training [time: 121.49s, train loss: 2669.9798]
08 Feb 13:53 INFO epoch 2 evaluating [time: 0.37s, valid_score: 0.126000]
08 Feb 13:53 INFO valid result:
recall@10 : 0.2384 recall@20 : 0.353 ndcg@10 : 0.126 ndcg@20 : 0.1549
08 Feb 13:53 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 13:55 INFO epoch 3 training [time: 121.86s, train loss: 2637.9703]
08 Feb 13:55 INFO epoch 3 evaluating [time: 0.39s, valid_score: 0.128400]
08 Feb 13:55 INFO valid result:
recall@10 : 0.2465 recall@20 : 0.3647 ndcg@10 : 0.1284 ndcg@20 : 0.1581
08 Feb 13:55 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 13:57 INFO epoch 4 training [time: 120.81s, train loss: 2615.9347]
08 Feb 13:57 INFO epoch 4 evaluating [time: 0.37s, valid_score: 0.129300]
08 Feb 13:57 INFO valid result:
recall@10 : 0.2492 recall@20 : 0.3707 ndcg@10 : 0.1293 ndcg@20 : 0.1599
08 Feb 13:57 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 13:59 INFO epoch 5 training [time: 120.97s, train loss: 2599.4822]
08 Feb 13:59 INFO epoch 5 evaluating [time: 0.39s, valid_score: 0.134700]
08 Feb 13:59 INFO valid result:
recall@10 : 0.2556 recall@20 : 0.3733 ndcg@10 : 0.1347 ndcg@20 : 0.1643
08 Feb 13:59 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:01 INFO epoch 6 training [time: 121.73s, train loss: 2586.4890]
08 Feb 14:01 INFO epoch 6 evaluating [time: 0.37s, valid_score: 0.135700]
08 Feb 14:01 INFO valid result:
recall@10 : 0.2579 recall@20 : 0.3725 ndcg@10 : 0.1357 ndcg@20 : 0.1645
08 Feb 14:01 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:03 INFO epoch 7 training [time: 121.57s, train loss: 2576.7161]
08 Feb 14:03 INFO epoch 7 evaluating [time: 0.36s, valid_score: 0.137600]
08 Feb 14:03 INFO valid result:
recall@10 : 0.257 recall@20 : 0.3803 ndcg@10 : 0.1376 ndcg@20 : 0.1687
08 Feb 14:03 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:05 INFO epoch 8 training [time: 121.08s, train loss: 2567.1276]
08 Feb 14:05 INFO epoch 8 evaluating [time: 0.49s, valid_score: 0.137400]
08 Feb 14:05 INFO valid result:
recall@10 : 0.2546 recall@20 : 0.3816 ndcg@10 : 0.1374 ndcg@20 : 0.1693
08 Feb 14:07 INFO epoch 9 training [time: 122.04s, train loss: 2559.4534]
08 Feb 14:07 INFO epoch 9 evaluating [time: 0.40s, valid_score: 0.138400]
08 Feb 14:07 INFO valid result:
recall@10 : 0.2583 recall@20 : 0.377 ndcg@10 : 0.1384 ndcg@20 : 0.1683
08 Feb 14:08 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:10 INFO epoch 10 training [time: 121.11s, train loss: 2553.1078]
08 Feb 14:10 INFO epoch 10 evaluating [time: 0.37s, valid_score: 0.138800]
08 Feb 14:10 INFO valid result:
recall@10 : 0.2598 recall@20 : 0.3818 ndcg@10 : 0.1388 ndcg@20 : 0.1696
08 Feb 14:10 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:12 INFO epoch 11 training [time: 121.39s, train loss: 2547.1715]
08 Feb 14:12 INFO epoch 11 evaluating [time: 0.37s, valid_score: 0.140000]
08 Feb 14:12 INFO valid result:
recall@10 : 0.2624 recall@20 : 0.3786 ndcg@10 : 0.14 ndcg@20 : 0.1694
08 Feb 14:12 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:14 INFO epoch 12 training [time: 119.66s, train loss: 2542.5861]
08 Feb 14:14 INFO epoch 12 evaluating [time: 0.35s, valid_score: 0.140600]
08 Feb 14:14 INFO valid result:
recall@10 : 0.2642 recall@20 : 0.3861 ndcg@10 : 0.1406 ndcg@20 : 0.1714
08 Feb 14:14 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:16 INFO epoch 13 training [time: 120.12s, train loss: 2537.7226]
08 Feb 14:16 INFO epoch 13 evaluating [time: 0.38s, valid_score: 0.141800]
08 Feb 14:16 INFO valid result:
recall@10 : 0.2659 recall@20 : 0.3884 ndcg@10 : 0.1418 ndcg@20 : 0.1726
08 Feb 14:16 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:18 INFO epoch 14 training [time: 120.24s, train loss: 2533.5068]
08 Feb 14:18 INFO epoch 14 evaluating [time: 0.34s, valid_score: 0.141600]
08 Feb 14:18 INFO valid result:
recall@10 : 0.2654 recall@20 : 0.3844 ndcg@10 : 0.1416 ndcg@20 : 0.1717
08 Feb 14:20 INFO epoch 15 training [time: 119.59s, train loss: 2529.5417]
08 Feb 14:20 INFO epoch 15 evaluating [time: 0.35s, valid_score: 0.140100]
08 Feb 14:20 INFO valid result:
recall@10 : 0.2631 recall@20 : 0.3839 ndcg@10 : 0.1401 ndcg@20 : 0.1707
08 Feb 14:22 INFO epoch 16 training [time: 119.84s, train loss: 2525.4996]
08 Feb 14:22 INFO epoch 16 evaluating [time: 0.36s, valid_score: 0.143800]
08 Feb 14:22 INFO valid result:
recall@10 : 0.2712 recall@20 : 0.3816 ndcg@10 : 0.1438 ndcg@20 : 0.1717
08 Feb 14:22 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:24 INFO epoch 17 training [time: 119.96s, train loss: 2522.5226]
08 Feb 14:24 INFO epoch 17 evaluating [time: 0.33s, valid_score: 0.138700]
08 Feb 14:24 INFO valid result:
recall@10 : 0.2603 recall@20 : 0.3848 ndcg@10 : 0.1387 ndcg@20 : 0.17
08 Feb 14:26 INFO epoch 18 training [time: 118.53s, train loss: 2519.3840]
08 Feb 14:26 INFO epoch 18 evaluating [time: 0.34s, valid_score: 0.140800]
08 Feb 14:26 INFO valid result:
recall@10 : 0.2656 recall@20 : 0.3836 ndcg@10 : 0.1408 ndcg@20 : 0.1706
08 Feb 14:28 INFO epoch 19 training [time: 118.21s, train loss: 2516.7339]
08 Feb 14:28 INFO epoch 19 evaluating [time: 0.35s, valid_score: 0.140100]
08 Feb 14:28 INFO valid result:
recall@10 : 0.2631 recall@20 : 0.3816 ndcg@10 : 0.1401 ndcg@20 : 0.1701
08 Feb 14:30 INFO epoch 20 training [time: 118.35s, train loss: 2513.8348]
08 Feb 14:30 INFO epoch 20 evaluating [time: 0.35s, valid_score: 0.143800]
08 Feb 14:30 INFO valid result:
recall@10 : 0.2664 recall@20 : 0.3821 ndcg@10 : 0.1438 ndcg@20 : 0.1731
08 Feb 14:30 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:32 INFO epoch 21 training [time: 118.06s, train loss: 2510.6953]
08 Feb 14:32 INFO epoch 21 evaluating [time: 0.33s, valid_score: 0.140800]
08 Feb 14:32 INFO valid result:
recall@10 : 0.2646 recall@20 : 0.3853 ndcg@10 : 0.1408 ndcg@20 : 0.1712
08 Feb 14:34 INFO epoch 22 training [time: 118.36s, train loss: 2508.4701]
08 Feb 14:34 INFO epoch 22 evaluating [time: 0.41s, valid_score: 0.143100]
08 Feb 14:34 INFO valid result:
recall@10 : 0.2671 recall@20 : 0.3834 ndcg@10 : 0.1431 ndcg@20 : 0.1725
08 Feb 14:36 INFO epoch 23 training [time: 118.78s, train loss: 2506.1868]
08 Feb 14:36 INFO epoch 23 evaluating [time: 0.27s, valid_score: 0.142100]
08 Feb 14:36 INFO valid result:
recall@10 : 0.2627 recall@20 : 0.3836 ndcg@10 : 0.1421 ndcg@20 : 0.1726
08 Feb 14:38 INFO epoch 24 training [time: 118.48s, train loss: 2504.0009]
08 Feb 14:38 INFO epoch 24 evaluating [time: 0.34s, valid_score: 0.144400]
08 Feb 14:38 INFO valid result:
recall@10 : 0.2695 recall@20 : 0.3786 ndcg@10 : 0.1444 ndcg@20 : 0.172
08 Feb 14:38 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:40 INFO epoch 25 training [time: 118.87s, train loss: 2501.9407]
08 Feb 14:40 INFO epoch 25 evaluating [time: 0.34s, valid_score: 0.144500]
08 Feb 14:40 INFO valid result:
recall@10 : 0.2697 recall@20 : 0.3879 ndcg@10 : 0.1445 ndcg@20 : 0.1743
08 Feb 14:40 INFO Saving current: saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 14:41 INFO epoch 26 training [time: 118.53s, train loss: 2499.9539]
08 Feb 14:42 INFO epoch 26 evaluating [time: 0.35s, valid_score: 0.141600]
08 Feb 14:42 INFO valid result:
recall@10 : 0.2642 recall@20 : 0.3828 ndcg@10 : 0.1416 ndcg@20 : 0.1715
08 Feb 14:43 INFO epoch 27 training [time: 118.03s, train loss: 2497.8314]
08 Feb 14:43 INFO epoch 27 evaluating [time: 0.29s, valid_score: 0.142800]
08 Feb 14:43 INFO valid result:
recall@10 : 0.2662 recall@20 : 0.3826 ndcg@10 : 0.1428 ndcg@20 : 0.1722
08 Feb 14:45 INFO epoch 28 training [time: 118.63s, train loss: 2496.5262]
08 Feb 14:45 INFO epoch 28 evaluating [time: 0.34s, valid_score: 0.143600]
08 Feb 14:45 INFO valid result:
recall@10 : 0.2687 recall@20 : 0.3854 ndcg@10 : 0.1436 ndcg@20 : 0.1729
08 Feb 14:47 INFO epoch 29 training [time: 118.19s, train loss: 2495.0252]
08 Feb 14:47 INFO epoch 29 evaluating [time: 0.35s, valid_score: 0.142600]
08 Feb 14:47 INFO valid result:
recall@10 : 0.2674 recall@20 : 0.3864 ndcg@10 : 0.1426 ndcg@20 : 0.1726
08 Feb 14:49 INFO epoch 30 training [time: 118.31s, train loss: 2493.1383]
08 Feb 14:49 INFO epoch 30 evaluating [time: 0.35s, valid_score: 0.140700]
08 Feb 14:49 INFO valid result:
recall@10 : 0.2603 recall@20 : 0.3856 ndcg@10 : 0.1407 ndcg@20 : 0.1723
08 Feb 14:51 INFO epoch 31 training [time: 118.36s, train loss: 2491.8519]
08 Feb 14:51 INFO epoch 31 evaluating [time: 0.27s, valid_score: 0.141800]
08 Feb 14:51 INFO valid result:
recall@10 : 0.2637 recall@20 : 0.3816 ndcg@10 : 0.1418 ndcg@20 : 0.1716
08 Feb 14:53 INFO epoch 32 training [time: 118.09s, train loss: 2490.0585]
08 Feb 14:53 INFO epoch 32 evaluating [time: 0.34s, valid_score: 0.142300]
08 Feb 14:53 INFO valid result:
recall@10 : 0.2652 recall@20 : 0.3816 ndcg@10 : 0.1423 ndcg@20 : 0.1717
08 Feb 14:55 INFO epoch 33 training [time: 118.14s, train loss: 2488.4718]
08 Feb 14:55 INFO epoch 33 evaluating [time: 0.34s, valid_score: 0.143500]
08 Feb 14:55 INFO valid result:
recall@10 : 0.2667 recall@20 : 0.3863 ndcg@10 : 0.1435 ndcg@20 : 0.1738
08 Feb 14:57 INFO epoch 34 training [time: 118.71s, train loss: 2486.9839]
08 Feb 14:57 INFO epoch 34 evaluating [time: 0.34s, valid_score: 0.142400]
08 Feb 14:57 INFO valid result:
recall@10 : 0.2666 recall@20 : 0.3796 ndcg@10 : 0.1424 ndcg@20 : 0.1709
08 Feb 14:59 INFO epoch 35 training [time: 118.42s, train loss: 2485.9322]
08 Feb 14:59 INFO epoch 35 evaluating [time: 0.34s, valid_score: 0.142400]
08 Feb 14:59 INFO valid result:
recall@10 : 0.2677 recall@20 : 0.3801 ndcg@10 : 0.1424 ndcg@20 : 0.1707
08 Feb 15:01 INFO epoch 36 training [time: 118.39s, train loss: 2484.8449]
08 Feb 15:01 INFO epoch 36 evaluating [time: 0.40s, valid_score: 0.143600]
08 Feb 15:01 INFO valid result:
recall@10 : 0.2642 recall@20 : 0.3858 ndcg@10 : 0.1436 ndcg@20 : 0.1743
08 Feb 15:01 INFO Finished training, best eval result in epoch 25
08 Feb 15:01 INFO Loading model structure and parameters from saved/TedRec-Feb-08-2024_13-47-34.pth
08 Feb 15:01 INFO best valid : OrderedDict([('recall@10', 0.2697), ('recall@20', 0.3879), ('ndcg@10', 0.1445), ('ndcg@20', 0.1743)])
08 Feb 15:01 INFO test result: OrderedDict([('recall@10', 0.2623), ('recall@20', 0.3709), ('ndcg@10', 0.1445), ('ndcg@20', 0.1719)])
08 Feb 15:01 INFO 0.2623 0.3709 0.1445 0.1719
Namespace(d='ml-1m')
['props/TedRec.yaml', 'props/overall.yaml']