-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblock_repair_run.py
149 lines (112 loc) · 5.5 KB
/
block_repair_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Developers: Yang Hu, et al.
# Email: [email protected]
import os
import csv
from basic_framework.cfs import get_cfs_map, cfs_map_equal
from basic_framework.repair import BlockRepair, ORO
csv_header = ["Question", "Sampling Rate", "Experiment ID", "File Name",
"Status", "Match (Rfty Code)", "Match (Ori Code)",
"Buggy Code", "Buggy Mutation",
"Refactored Correct Code", "Original Correct File Name", "Rule ID", "Repair",
"Stru. Matching Time", "Online Refactoring Time", "GCR Time", "Stru. Mutation Time",
"Block Mapping Time", "Variable Mapping Time",
"Specification&Synthesis Time", "GPT Time", "Total Time",
"#Passed Test Case", "#Test Case",
"RPS"]
key_list = ["status", "match", "match_ori",
"ori_bug_code", "align_bug_code",
"corr_code", "corr_file_name", "rule_name", "rep_code",
"stru_match_time", "ol_refactoring_time", "gcr_time", "mut_time",
"bb_map_time", "vn_map_time",
"spec_syn_time", "gpt_time", "total_time",
"cnt_case_pass", "cnt_case_all",
"rps"]
def gen_row(ques_name, sr, exp_idx, file_name, code_perf_map):
global key_list
row = [ques_name, sr, exp_idx, file_name]
for key in key_list:
ele = "N/A"
if key in code_perf_map.keys():
ele = code_perf_map[key]
if ele != "N/A" and ("time" in key or key == "rps"):
row.append("%.3f" % ele)
else:
row.append(ele)
return row
def perf_to_csv(ques_dir_path, perf_map_dict, sr_list, online_or_offline, use_gpt, gpt_model):
global csv_header
ques_name = ques_dir_path.split("/")[-1]
csv_path = "results/" + ques_name + "_sr" + str(sr_list[0])
if use_gpt == 'none':
csv_path += "_gpt_none"
else:
csv_path += "_" + gpt_model + "_" + use_gpt
csv_path += ".csv"
# csv_path = ques_dir_path + "/refactory_" + online_or_offline + ("" if use_gpt == 'none' else "_gpc") + ".csv"
with open(csv_path, 'w') as f:
csv_w = csv.writer(f)
csv_w.writerow(csv_header)
for sr in perf_map_dict.keys():
for exp_idx in perf_map_dict[sr].keys():
for file_name in perf_map_dict[sr][exp_idx].keys():
code_perf_map = perf_map_dict[sr][exp_idx][file_name]
if "tr" in code_perf_map.keys():
code_perf_map["cnt_case_pass"] = list(
code_perf_map["tr"].values()).count(True)
code_perf_map["cnt_case_all"] = len(
list(code_perf_map["tr"].values()))
row = gen_row(ques_name, sr, exp_idx,
file_name, code_perf_map)
csv_w.writerow(row)
def repair_ques(ques_dir_path, is_offline_ref, is_online_ref, is_mutation, sr_list, exp_time, use_gpt, gpt_model):
br = BlockRepair(ques_dir_path, is_offline_ref=is_offline_ref, is_online_ref=is_online_ref,
is_mutation=is_mutation, sr_list=sr_list, exp_time=exp_time, use_gpt=use_gpt, gpt_model=gpt_model)
return br.run()
def repair_dataset(data_dir_path, ques_name_list, is_offline_ref, is_online_ref, sr_list, exp_time, is_csv_log, is_mutation, use_gpt, gpt_model):
if ques_name_list is None:
ques_name_list = list(os.listdir(data_dir_path))
for ques_dir_name in ques_name_list:
ques_dir_path = data_dir_path + "/" + ques_dir_name
ques_perf_map = repair_ques(
ques_dir_path, is_offline_ref, is_online_ref, is_mutation, sr_list, exp_time, use_gpt, gpt_model)
online_or_offline = None
if is_online_ref:
online_or_offline = "online"
elif is_offline_ref:
online_or_offline = "offline"
else:
online_or_offline = "norefactor"
if is_csv_log:
perf_to_csv(ques_dir_path, ques_perf_map, sr_list, online_or_offline, use_gpt, gpt_model)
def oro_dataset(data_dir_path, ques_name_list, sr_list, exp_time):
if ques_name_list is None:
ques_name_list = list(os.listdir(data_dir_path))
for ques_dir_name in ques_name_list:
ques_dir_path = data_dir_path + "/" + ques_dir_name
oro_ques(ques_dir_path, sr_list, exp_time)
def oro_ques(ques_dir_path, sr_list, exp_time):
o = ORO(ques_dir_path, sr_list=sr_list, exp_time=exp_time)
o.run()
def cmb_csv_logs(data_dir_path, online_or_offline):
"""Combine csvs into one"""
global csv_header
ir_dir_path = os.getcwd() + "/intermediate_results"
if not os.path.isdir(ir_dir_path):
os.makedirs(ir_dir_path)
global_csv_path = ir_dir_path + "/refactory_" + online_or_offline + ".csv"
with open(global_csv_path, 'w') as f:
csv_w = csv.DictWriter(f, fieldnames=csv_header)
csv_w.writeheader()
for ques_dir_name in os.listdir(data_dir_path):
ques_dir_path = data_dir_path + "/" + ques_dir_name
local_csv_path = ques_dir_path + "/refactory_" + online_or_offline + ".csv"
if os.path.isfile(local_csv_path):
with open(local_csv_path, "r") as csvfile:
csv_r = csv.DictReader(csvfile) # reader
for row in csv_r:
csv_w.writerow(row)
import pandas as pd
df = pd.read_csv(global_csv_path, header=0)
print(df.groupby("Status").count()[['File Name']])
print("\n\n")
print(df.groupby("Match (Rfty Code)").count()[['File Name']])