-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenomic_anlaysis.py
133 lines (100 loc) · 4.6 KB
/
genomic_anlaysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from Bio import Entrez, SeqIO
import matplotlib.pyplot as plt
from Bio.SeqUtils import GC_skew
# Add your email address for NCBI's E-utilities
Entrez.email = '[email protected]'
def fetch_genomic_data(accession_number):
try:
# Step 1: Fetch Genomic Data from NCBI
handle = Entrez.efetch(db="nucleotide", id=accession_number, rettype="gb", retmode="text")
record = SeqIO.read(handle, "genbank")
handle.close()
# Step 2: Reverse Sequences
reversed_sequence = record.seq.reverse_complement()
# Step 3: Calculate GC Skew
gc_skew_values = GC_skew(reversed_sequence)
return record, reversed_sequence, gc_skew_values
except Exception as e:
print(f"Error fetching genomic data: {e}")
return None, None, None
def calculate_coverage(record):
coverage = [0] * len(record.seq)
for feature in record.features:
# Assuming each feature contributes 1 to the coverage
for position in feature.location:
coverage[position] += 1
return coverage
def plot_coverage(coverage, title="Coverage Plot"):
plt.plot(range(len(coverage)), coverage)
plt.xlabel("Position")
plt.ylabel("Coverage")
plt.title(title)
plt.show(block=True)
def create_bed_file(record, gene_sequences, bed_file_path):
with open(bed_file_path, 'w') as bed_file:
for i, (gene_name, gene_sequence) in enumerate(gene_sequences):
start = i
end = i + len(gene_sequence)
bed_file.write(f"{record.id}\t{start}\t{end}\t{gene_name}\n")
def create_track_file(track_file_path):
with open(track_file_path, 'w') as track_file:
track_file.write("track exampleTrack\n")
track_file.write("type bed 3\n")
track_file.write("shortLabel Your Custom Track\n")
track_file.write("longLabel Your Custom Track Description\n")
track_file.write("visibility hide\n")
def visualize_gc_skew(record, reversed_sequence, gc_skew_values):
# Step 4: Visualize GC Skew
plt.plot(range(len(gc_skew_values)), gc_skew_values)
plt.xlabel("Position")
plt.ylabel("GC Skew")
plt.title(f"GC Skew of {record.id}")
# Save the plot to a file
plt.savefig("gc_skew_plot.png")
def extract_gene_sequences(record):
gene_sequences = []
for feature in record.features:
if feature.type == 'gene':
gene_sequence = feature.extract(record.seq)
gene_sequences.append((feature.qualifiers['gene'][0], gene_sequence))
return gene_sequences
def calculate_gene_lengths(gene_sequences):
gene_lengths = {gene_name: len(sequence) for gene_name, sequence in gene_sequences}
return gene_lengths
def visualize_gene_locations(record, gene_sequences):
fig, ax = plt.subplots()
for i, (gene_name, gene_sequence) in enumerate(gene_sequences):
ax.text(i, len(record.seq) + 10, gene_name, rotation=45, ha='right', va='bottom')
ax.add_patch(plt.Rectangle((i, 0), len(gene_sequence), len(record.seq), color='lightgray'))
ax.set_xlim(0, len(record.seq))
ax.set_ylim(0, len(record.seq) + 20)
ax.set_xlabel("Position")
ax.set_title(f"Gene Locations in {record.id}")
plt.savefig("gene_locations_plot.png")
def annotate_genes(record):
# Step 5: Annotate Genes
gene_features = [feature for feature in record.features if feature.type == 'gene']
for gene_feature in gene_features:
print(f"Gene: {gene_feature.qualifiers['gene'][0]}")
print(f"Location: {gene_feature.location}")
print(f"Description: {gene_feature.qualifiers.get('product',['No description available'])[0]}\n")
if __name__ == "__main__":
# Replace 'your_accession_number' with the actual accession number you want to analyze
accession_number = "JX573431.1"
# Fetch genomic data, reverse sequences, and calculate GC skew
record, reversed_sequence, gc_skew_values = fetch_genomic_data(accession_number)
if record:
# Visualize GC skew and save the plot to a file
visualize_gc_skew(record, reversed_sequence, gc_skew_values)
# Annotate and print information about genes
annotate_genes(record)
# Extract gene sequences
gene_sequences = extract_gene_sequences(record)
# Create a BED file for gene locations
create_bed_file(record, gene_sequences, "gene_locations.bed")
# Create a track file for the UCSC Genome Browser
create_track_file("trackDb.txt")
# Calculate coverage
coverage = calculate_coverage(record)
# Plot coverage
plot_coverage(coverage, title=f"Coverage Plot of {record.id}")