forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
executable file
·137 lines (107 loc) · 6.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python3
#
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the 'Software'),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import os
import http
import flask
import logging
import werkzeug
import argparse
from stream import Stream
from utils import rest_property, rest_function, alerts
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, epilog=Stream.usage())
parser.add_argument("--host", default='0.0.0.0', type=str, help="interface for the webserver to use (default is all interfaces, 0.0.0.0)")
parser.add_argument("--port", default=8050, type=int, help="port used for webserver (default is 8050)")
parser.add_argument("--ssl-key", default=os.getenv('SSL_KEY'), type=str, help="path to PEM-encoded SSL/TLS key file for enabling HTTPS")
parser.add_argument("--ssl-cert", default=os.getenv('SSL_CERT'), type=str, help="path to PEM-encoded SSL/TLS certificate file for enabling HTTPS")
parser.add_argument("--title", default='Hello AI World | Recognizer', type=str, help="the title of the webpage as shown in the browser")
parser.add_argument("--input", default='webrtc://@:8554/input', type=str, help="input camera stream or video file")
parser.add_argument("--output", default='webrtc://@:8554/output', type=str, help="WebRTC output stream to serve from --input")
parser.add_argument("--data", default='data', type=str, help="path to store dataset and models under")
parser.add_argument("--network", "--net", default='resnet18', type=str, help="the type of DNN architecture to use (default: resnet18)")
parser.add_argument('--net-width', default=224, type=int, metavar='N', help="the input width (in pixels) of the DNN model (default: 224)")
parser.add_argument('--net-height', default=224, type=int, metavar='N', help="the input height (in pixels) of the DNN model (default: 224)")
parser.add_argument('--batch-size', default=1, type=int, metavar='N', help="training batch size to use (default: 1)")
parser.add_argument("--workers", default=2, type=int, metavar='N', help="number of training data loading workers (default: 2)")
parser.add_argument("--optimizer", default='adam', type=str, choices=['adam', 'sgd'], help="training optimizer to use (default: adam)")
parser.add_argument('--learning-rate', default=0.001, type=float, metavar='LR', help="initial training learning rate (default: 0.001)")
parser.add_argument('--no-augmentation', action='store_false', dest='augmentation', help="disable training data image augmentation")
parser.add_argument('--print-freq', default=10, type=int, metavar='N', help="print training progress info every N steps")
args = parser.parse_known_args()[0]
# create Flask & stream instance
app = flask.Flask(__name__)
stream = Stream(args)
# Flask routes
@app.route('/')
def index():
return flask.render_template('index.html', title=args.title, send_webrtc=args.input.startswith('webrtc'),
input_stream=args.input, output_stream=args.output,
classification=os.path.basename(stream.model.onnx_path))
@app.route('/alerts', methods=['GET'])
def get_alerts():
return alerts(flask.request.args.get('since', 0, type=int))
@app.route('/dataset/classes', methods=['GET'])
def dataset_classes():
return stream.dataset.classes
@app.route('/dataset/active_tags', methods=['GET', 'PUT'])
def dataset_active_tags():
return rest_function(stream.dataset.GetActiveTags, stream.dataset.SetActiveTags, str)
@app.route('/dataset/recording', methods=['GET', 'PUT'])
def dataset_recording():
return rest_property(stream.dataset, 'recording', bool)
@app.route('/dataset/upload', methods=['POST'])
def dataset_upload():
file = flask.request.files.get('file')
if not file or not file.filename:
print('/dataset/upload -- invalid request (missing file)')
return ('', http.HTTPStatus.BAD_REQUEST)
file.filename = werkzeug.utils.secure_filename(file.filename)
saved_path = stream.dataset.Upload(file)
if not saved_path:
print(f"/dataset/upload -- failed to save '{file.mimetype}' to dataset ({file.filename})")
return ('', http.HTTPStatus.INTERNAL_SERVER_ERROR)
return (saved_path, http.HTTPStatus.OK)
@app.route('/training/enabled', methods=['GET', 'PUT'])
def training_enabled():
return rest_property(stream.model, 'training_enabled', bool)
@app.route('/training/stats', methods=['GET'])
def training_stats():
return stream.model.training_stats
@app.route('/classification/enabled', methods=['GET', 'PUT'])
def classification_enabled():
return rest_property(stream.model, 'inference_enabled', bool)
@app.route('/classification/confidence_threshold', methods=['GET', 'PUT'])
def classification_confidence_threshold():
return rest_property(stream.model, 'classification_threshold', float)
@app.route('/classification/output_smoothing', methods=['GET', 'PUT'])
def classification_output_smoothing():
return rest_property(stream.model, 'classification_smoothing', float)
# start stream thread
stream.start()
# check if HTTPS/SSL requested
ssl_context = None
if args.ssl_cert and args.ssl_key:
ssl_context = (args.ssl_cert, args.ssl_key)
# disable request logging (https://stackoverflow.com/a/18379764)
logging.getLogger('werkzeug').setLevel(logging.WARNING)
# start the webserver
app.run(host=args.host, port=args.port, ssl_context=ssl_context, debug=True, use_reloader=False)