forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
245 lines (197 loc) · 8.21 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python3
#
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the 'Software'),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import os
import json
import queue
import datetime
import threading
import traceback
import torch
import numpy as np
import PIL
from jetson_utils import cudaMemcpy, saveImage
from utils import alert
class Dataset(threading.Thread, torch.utils.data.Dataset):
"""
Class for saving multi-label image tagging datasets.
"""
def __init__(self, args):
"""
Create dataset object.
"""
super().__init__()
self.args = args
self.classes = [] # list of class names
self.tags = {} # dict mapping image filename => tags
self.num_tags = 0 # total number of labels/tags
self.active_tags = [] # list of tags to be applied to new images
self.multi_label = False # true if there are multiple tags (labels) per image
self.class_distribution = [] # number of tags for each class
self.queue = queue.Queue()
self.recording = False
self.transform = None
self.target_transform = None
# create directory structure
self.root_dir = self.args.data
self.image_dir = os.path.join(self.root_dir, 'images')
os.makedirs(self.image_dir, exist_ok=True)
# load existing annotations
self.tags_path = os.path.join(self.root_dir, 'tags.json')
if os.path.exists(self.tags_path):
with open(self.tags_path, 'r') as file:
self.tags = json.load(file)
self.update_class_labels()
self.update_class_distribution()
print(f"dataset -- loaded tags for {len(self.tags)} images, {len(self.classes)} from {self.tags_path}")
# create a default class if necessary
if len(self.classes) == 0:
self.classes = ['background']
# start recorder thread
self.start()
def __len__(self):
"""
Return the size of the dataset (the number of images)
"""
return len(self.tags)
def __getitem__(self, index):
"""
Return (image, labels) tensors for training
"""
key = list(self.tags.keys())[index]
tags = self.tags[key]
image = PIL.Image.open(os.path.join(self.image_dir, key)).convert('RGB')
if self.multi_label:
labels = [0] * len(self.classes)
for tag in tags:
labels[self.classes.index(tag)] = 1
labels = torch.FloatTensor(labels)
else:
labels = torch.tensor(self.classes.index(self.tags[key][0]), dtype=torch.int64)
if self.transform:
image = self.transform(image)
if self.target_transform:
labels = self.target_transform(labels)
return image, labels
def record(self):
"""
Record the queue of incoming images.
"""
try:
img, timestamp = self.queue.get(timeout=1)
except queue.Empty:
pass
else:
filename = f"{timestamp.strftime('%Y%m%d_%H%M%S_%f')}.jpg"
filepath = os.path.join(self.image_dir, filename)
saveImage(filepath, img, quality=85)
self.ApplyTags(filename)
del img
def run(self):
"""
Run the dataset thread's main loop for recording incoming data.
"""
while True:
try:
self.record()
except:
traceback.print_exc()
def AddImage(self, img):
"""
Adds an image to the queue to be saved to the dataset.
"""
if not self.recording or len(self.active_tags) == 0:
return
timestamp = datetime.datetime.now()
img_copy = cudaMemcpy(img)
self.queue.put((img_copy, timestamp))
def Upload(self, file):
path = os.path.join(self.image_dir, file.filename)
print(f"/dataset/upload -- saving '{file.mimetype}' to {path}")
file.save(path)
self.ApplyTags(file.filename)
return path
def GetActiveTags(self):
"""
Return a comma-separated string of the currently active labels applied to images as they are recorded.
"""
return ','.join(self.active_tags)
def SetActiveTags(self, labels):
"""
Set the list of active labels (as a comma-separated or semicolon-separated string)
that will be applied to incoming images as they are recorded into the dataset.
"""
if labels:
self.active_tags = labels.replace(';', ',').split(',')
self.active_tags = [label.strip().lower() for label in self.active_tags]
else:
self.active_tags = []
def ApplyTags(self, filename, tags=None, flush=True):
"""
Apply tag annotations to the image and save them to disk (by default, the active tags will be applied)
"""
if tags is None:
tags = self.active_tags
if len(tags) == 0:
return
self.tags[filename] = self.active_tags
self.update_class_labels()
self.update_class_distribution()
if flush:
self.SaveTags()
alert(f"Dataset has {len(self.tags)} images, {len(self.classes)} classes", category='dataset')
def SaveTags(self, path=''):
"""
Flush the image tags to the JSON annotations file on disk.
"""
if not path:
path = self.tags_path
with open(path, 'w') as file:
json.dump(self.tags, file, indent=4)
def update_class_labels(self):
"""
Sync the list of class labels from the tag annotations.
"""
classes = []
multi_label = False
for tags in self.tags.values():
if len(tags) > 1:
multi_label = True
for tag in tags:
if tag not in classes:
classes.append(tag)
self.classes = sorted(classes)
self.multi_label = multi_label
print(f'dataset -- class labels: {self.classes}')
def update_class_distribution(self):
"""
Update the class distribution and total tag count.
TODO add optional 'tags' param to incremently add at runtime.
"""
num_tags = 0
class_distribution = [0] * len(self.classes)
for tags in self.tags.values():
for tag in tags:
class_distribution[self.classes.index(tag)] += 1
num_tags += 1
self.num_tags = num_tags
self.class_distribution = class_distribution