forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
411 lines (328 loc) · 16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import os
import time
import shutil
import threading
import traceback
import torch
import torchvision
from jetson_inference import imageNet
from jetson_utils import cudaFont, cudaAllocMapped, Log
from utils import reshape_model, alert
class Model(threading.Thread):
"""
Represents a classification / image tagging model with online training.
"""
def __init__(self, args, dataset):
"""
Initialize the model
"""
super().__init__()
self.args = args
self.font = cudaFont()
self.epoch = 0 # current training epoch
self.epoch_images = 0 # number of images processed this epoch
self.loss = 0.0 # loss so far this epoch
self.accuracy = 0.0 # accuracy so far this epoch
self.best_accuracy = 0.0 # the best epoch accuracy so far
self.dataset = dataset # reference to the dataset
self.dataloader = None # PyTorch dataloader
self.model_train = None # PyTorch training model
self.model_infer = None # TensorRT inference model
self.input_layer = 'input_0'
self.output_layer = 'output_0'
self.training_enabled = False
self.inference_enabled = False
self.inference_threshold = 0.001
self.inference_smoothing = 0.0
# setup model directory
self.model_dir = os.path.join(self.args.data, 'models')
self.best_path = os.path.join(self.model_dir, 'model_best.pth')
self.onnx_path = os.path.join(self.model_dir, f'{args.network}.onnx')
self.labels_path = os.path.join(self.model_dir, 'labels.txt')
self.checkpoint_path = os.path.join(self.model_dir, 'checkpoint.pth')
os.makedirs(self.model_dir, exist_ok=True)
# start training thread
self.start()
def Classify(self, img):
"""
Run classification inference and return the results.
"""
if not self.inference_enabled or self.model_infer is None:
return
# returns a list of (classID, confidence) tuples
self.results = self.model_infer.Classify(img, topK=0 if self.dataset.multi_label else 1)
# to trigger custom actions/processing, add them here:
# for classID, confidence in self.results:
# if self.model_infer.GetClassLabel(classID) == 'person': # change for your classes
# print(f"detected a person with {confidence * 100}% confidence") # do something in response
return self.results
def Visualize(self, img, results=None):
"""
Visualize the results on an image.
"""
if not self.inference_enabled or self.model_infer is None:
return
if results is None:
results = self.results
for i, (classID, confidence) in enumerate(results):
str = f"{confidence * 100:05.2f}% {self.model_infer.GetClassLabel(classID)}"
self.font.OverlayText(img, img.width, img.height, str, 5, 5+(i*37), self.font.White, self.font.Gray40)
return img
def train(self):
"""
Training thread main loop (assuming dataset can change)
"""
self.model_train = torchvision.models.__dict__[self.args.network](pretrained=True)
self.model_train = self.reshape(len(self.dataset.classes))
# load previous checkpoint
if os.path.isfile(self.checkpoint_path):
print(f"[torch] loading checkpoint {self.checkpoint_path}")
checkpoint = torch.load(self.checkpoint_path)
self.model_train.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
#self.inference_enabled = True
# load TensorRT model
self.load_inference()
# setup data transforms
transforms = []
if self.args.augmentation:
transforms = [
torchvision.transforms.ColorJitter(0.2, 0.2, 0.2, 0.2),
torchvision.transforms.RandomHorizontalFlip()
]
transforms += [
torchvision.transforms.Resize((self.args.net_height, self.args.net_width)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
self.dataset.transform = torchvision.transforms.Compose(transforms)
# create loss function
if self.dataset.multi_label:
self.criterion = torch.nn.BCEWithLogitsLoss().cuda()
else:
self.criterion = torch.nn.CrossEntropyLoss().cuda()
# detect if the dataset changed
num_images = len(self.dataset)
# training loop
while True:
# wait for data and for training to be enabled
if not self.training_enabled or len(self.dataset) == 0:
time.sleep(1.0)
continue
alert(f"Started training epoch {self.epoch} on {len(self.dataset)} images, {len(self.dataset.classes)} classes")
# create the dataloader now that we know there's data
if self.dataloader is None:
self.dataloader = torch.utils.data.DataLoader(
self.dataset, batch_size=self.args.batch_size, shuffle=True,
num_workers=self.args.workers, pin_memory=True)
# train the model for one epoch
self.train_epoch()
# reset the metrics if the dataset changed
if num_images != len(self.dataset):
print(f"[torch] dataset size changed from {num_images} to {len(self.dataset)}")
num_images = len(self.dataset)
self.best_accuracy = 0.0
# save the model checkpoints
is_best = self.accuracy >= self.best_accuracy
self.best_accuracy = max(self.accuracy, self.best_accuracy)
alert(f"Done training epoch {self.epoch}, {self.accuracy:.1f}% accuracy {'(new best)' if is_best else ''}")
self.save_checkpoint({
'epoch': self.epoch,
'network': self.args.network,
'resolution': (self.args.net_height, self.args.net_width),
'classes': self.dataset.classes,
'num_classes': len(self.dataset.classes),
'multi_label': self.dataset.multi_label,
'state_dict': self.model_train.state_dict(),
'optimizer': self.optimizer.state_dict(),
'accuracy': self.accuracy,
'loss': self.loss
}, is_best)
self.epoch += 1
def train_epoch(self):
"""
Train the model for one epoch.
"""
self.model_train.train()
acc_sum = 0.0
loss_sum = 0.0
self.epoch_images = 0
for i, (images, target) in enumerate(self.dataloader):
# reshape the model if the number of classes changed
if self.model_train.num_classes != len(self.dataset.classes):
self.model_train = self.reshape(len(self.dataset.classes))
self.best_accuracy = 0.0
alert(f"Restarting training epoch {self.epoch} (change in number of classes)")
return self.train_epoch()
# move the tensors to GPU
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# train the image(s)
output = self.model_train(images)
loss = self.criterion(output, target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# update metrics
loss_sum += loss.item() * images.size(0)
acc_sum += self.compute_accuracy(output, target) * images.size(0)
self.epoch_images += images.size(0)
self.accuracy = acc_sum / self.epoch_images
self.loss = loss_sum / self.epoch_images
# log updates every N steps (and the last step)
if (i % self.args.print_freq == 0) or (i == len(self.dataloader)-1):
print(f"[torch] epoch {self.epoch} [{i}/{len(self.dataloader)}] loss={self.loss:.4e} accuracy={self.accuracy:.2f} {'(multi-tag)' if self.dataset.multi_label else ''}")
# the user could disable training mid-epoch
if not self.training_enabled:
break
def reshape(self, num_classes):
"""
Reshape the model (during training) for a different number of classes.
"""
self.model_train = reshape_model(self.model_train, self.args.network, num_classes)
if self.args.optimizer == 'adam':
self.optimizer = torch.optim.Adam(self.model_train.parameters(), lr=self.args.learning_rate)
elif self.args.optimizer == 'sgd':
self.optimizer = torch.optim.SGD(self.model_train.parameters(), lr=self.args.learning_rate, momentum=0.9, weight_decay=1e-4)
return self.model_train.cuda()
def compute_accuracy(self, output, target, multi_label_threshold=0.5):
"""
Computes the accuracy of predictions vs groundtruth
"""
with torch.no_grad():
if self.dataset.multi_label:
output = torch.nn.functional.sigmoid(output)
preds = ((output >= multi_label_threshold) == target.bool()) # https://medium.com/@yrodriguezmd/tackling-the-accuracy-multi-metric-9e2356f62513
# https://stackoverflow.com/a/61585551
#output[output >= multi_label_threshold] = 1
#output[output < multi_label_threshold] = 0
#preds = (output == target)
else:
output = torch.nn.functional.softmax(output, dim=-1)
_, preds = torch.max(output, dim=-1)
preds = (preds == target)
return preds.float().mean().cpu().item() * 100.0
def save_checkpoint(self, state, is_best):
"""
Save a PyTorch model checkpoint, and refresh ONNX/TensorRT if it has the best accuracy so far.
"""
torch.save(state, self.checkpoint_path)
if is_best:
shutil.copyfile(self.checkpoint_path, self.best_path)
print(f"[torch] saved best model to {self.best_path}")
self.export_onnx()
self.load_inference()
else:
print(f"[torch] saved checkpoint {self.epoch} to {self.checkpoint_path}")
def export_onnx(self):
"""
Export the PyTorch model to ONNX.
"""
print(f"[torch] exporting ONNX to {self.onnx_path}")
alert(f"Exporting trained model to {self.onnx_path} (epoch {self.epoch}, {self.accuracy:.1f}% accuracy)")
if self.dataset.multi_label:
model = torch.nn.Sequential(self.model_train, torch.nn.Sigmoid())
else:
model = torch.nn.Sequential(self.model_train, torch.nn.Softmax(1))
model.eval()
torch.onnx.export(
model,
torch.ones((1, 3, self.args.net_height, self.args.net_width)).cuda(),
self.onnx_path,
input_names=[self.input_layer],
output_names=[self.output_layer],
verbose=True)
with open(self.labels_path, 'w') as file:
file.write('\n'.join(self.dataset.classes))
alert(f"Exported trained model to {self.onnx_path} (epoch {self.epoch}, {self.accuracy:.1f}% accuracy)", level='success')
def load_inference(self):
"""
Load the TensorRT model from ONNX.
"""
if not os.path.isfile(self.onnx_path):
self.export_onnx()
alert(f"Loading inference model from {self.onnx_path}")
self.model_infer = imageNet(model=self.onnx_path, labels=self.labels_path, input_blob=self.input_layer, output_blob=self.output_layer)
self.model_infer.SetThreshold(self.inference_threshold)
self.model_infer.SetSmoothing(self.inference_smoothing)
alert(f"Loaded inference model from {self.onnx_path}", level='success')
def run(self):
"""
Training thread main loop
"""
try:
self.train()
except:
exc = traceback.format_exc()
alert(exc, level='error', category='exception', duration=0)
Log.Error(exc)
@property
def training_stats(self):
"""
Returns a dict containing epoch training progress, model metrics, and dataset statistics.
"""
return {
'epoch': self.epoch,
'epoch_images': self.epoch_images, # current epoch process step (of num_images)
'loss': self.loss,
'accuracy': self.accuracy,
'num_images': len(self.dataset),
'num_tags': self.dataset.num_tags,
'classes': self.dataset.classes,
'class_distribution': self.dataset.class_distribution,
}
@property
def classification_threshold(self):
"""
Returns the confidence threshold used during classification (inference)
"""
return self.inference_threshold
@classification_threshold.setter
def classification_threshold(self, value):
"""
Sets the confidence threshold used during classification (inference)
"""
if self.model_infer:
self.model_infer.SetThreshold(value)
self.inference_threshold = value
@property
def classification_smoothing(self):
"""
Return the temporal smoothing factor used during classification (inference)
"""
return self.inference_smoothing
@classification_smoothing.setter
def classification_smoothing(self, value):
"""
Return the temporal smoothing factor used during classification (inference)
"""
if self.model_infer:
self.model_infer.SetSmoothing(value)
self.inference_smoothing = value
@staticmethod
def Usage():
"""
Return help text for when the app is started with -h or --help
"""
return imageNet.Usage()