forked from thuml/TCL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
69 lines (52 loc) · 1.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
import pdb
import os
import shutil
import time
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import math
import pdb
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state, is_best):
if is_best:
torch.save(state, 'model_best.pth.tar')
def adjust_learning_rate(optimizer, iter_num, args, sgd_weight_param):
total_iter = 10000.0
lr = args.lr * (1.0 + args.alpha * iter_num / total_iter) ** (-args.beta)
for i, param_group in enumerate(optimizer.param_groups):
param_group['lr'] = lr * sgd_weight_param[i]
return optimizer
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res