-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathmain.py
88 lines (67 loc) · 2.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import pickle
import torch
import cv2
import numpy as np
from explainer import explain
from utils import math_utils
from utils import io_utils
use_cuda = torch.cuda.is_available()
# TODO: Is this still used?
#####
#
# 1) Load trained GNN model
# 2) Load a query computation graph
#
#####
MODEL_PATH = "gcn-vanilla.pt"
CG_PATH = "1.pt"
model = io_utils.load_model(MODEL_PATH)
original_cg = io_utils.load_cg(CG_PATH)
#####
#
# Set parameters of explainer
#
#####
tv_beta = 3
learning_rate = 0.1
max_iterations = 500
l1_coeff = 0.01
tv_coeff = 0.2
# Initialize cg mask
blurred_cg1 = cv2.GaussianBlur(original_cg, (11, 11), 5)
blurred_cg2 = np.float32(cv2.medianBlur(original_cg, 11)) / 255
mask_init = np.ones((28, 28), dtype=np.float32)
# Convert to torch variables
cg = io_utils.preprocess_cg(original_cg)
blurred_cg = io_utils.preprocess_cg(blurred_cg2)
mask = io_utils.numpy_to_torch(mask_init)
if use_cuda:
upsample = torch.nn.UpsamplingBilinear2d(size=(224, 224)).cuda()
else:
upsample = torch.nn.UpsamplingBilinear2d(size=(224, 224))
optimizer = torch.optim.Adam([mask], lr=learning_rate)
target = torch.nn.Softmax()(model(cg))
category = np.argmax(target.cpu().data.numpy())
print("Category with highest probability", category)
print("Optimizing.. ")
for i in range(max_iterations):
upsampled_mask = upsample(mask)
# Use the mask to perturb the input computation graph
perturbed_input = cg.mul(upsampled_mask) + blurred_cg.mul(1 - upsampled_mask)
noise = np.zeros((224, 224, 3), dtype=np.float32)
cv2.randn(noise, 0, 0.2)
noise = io_utils.numpy_to_torch(noise)
perturbed_input = perturbed_input + noise
outputs = torch.nn.Softmax()(model(perturbed_input))
loss = (
l1_coeff * torch.mean(torch.abs(1 - mask))
+ tv_coeff * math_utils.tv_norm(mask, tv_beta)
+ outputs[0, category]
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Optional: clamping seems to give better results
mask.data.clamp_(0, 1)
upsampled_mask = upsample(mask)
io_utils.save(upsampled_mask)