-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCompositeEnvironment.py
165 lines (120 loc) · 4.88 KB
/
CompositeEnvironment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import random
import numpy as np
from Terrain import generator
import matplotlib.pyplot as plt
from DNoise.dnoise import EncoderDecoder as ed
from Terrain.timing import FunctionTimer
import torch
from torch import nn
Image = np.ndarray
class MAELoss(nn.Module):
def __init__(self):
super(MAELoss, self).__init__()
self.loss_fn = nn.L1Loss()
def forward(self, y_pred, y_true):
return self.loss_fn(y_pred, y_true)
loss_fn = MAELoss()
class Environment:
def __init__(self, image: Image, noisy: Image, radius: int, center: None | tuple) -> None:
self.image = image.copy()
self.radius = radius
self.noisy_image = noisy.copy()
self.center = center
def generate(self) -> Image:
masked = get_visible_image(self.image, self.radius, self.noisy_image, self.center)
return masked
def create_circular_mask(h: int, w: int, radius: int, center: None | tuple = None) -> np.ndarray:
if center is None: # use the middle of the image
center = (w / 2, h / 2)
y, x = np.ogrid[:h, :w]
dist_from_center = np.sqrt((x - center[0]) ** 2 + (y - center[1]) ** 2)
mask = dist_from_center <= radius
return mask
def get_visible_image(image: Image, radius: int, noisy: Image, center: None | tuple) -> Image:
# Find the size of the image
image = np.abs(image)
h, w = image.shape[:2]
mask = create_circular_mask(h, w, radius, center)
masked_img = image.copy()
mask = np.array(mask, dtype=int)
for i in range(len(mask)):
for j in range(len(mask[i])):
if mask[i][j] == 0:
masked_img[i][j] = noisy[i][j]
else:
masked_img[i][j] = image[i][j]
return masked_img
class Visualizer:
def __init__(self, model_path, original):
self.model_path = model_path
self.original = original.copy()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def dNoiseVis(self, inputpic):
print("Loaded Model")
model = ed().to(self.device)
model.eval()
model.load_state_dict(torch.load(f=self.model_path))
inputpic = np.array(inputpic, dtype=float)
inputpic = torch.tensor(inputpic, dtype=torch.float32).view(1, 1, 256, 256)
inputpic = inputpic.type(torch.cuda.FloatTensor)
de_noise_timer = FunctionTimer("De-Noising")
de_noise_timer.start()
de_noised_image = model(inputpic)
de_noise_timer.stop()
de_noise_timer.print()
loss = loss_fn(de_noised_image, inputpic)
loss = (1 - loss.item()) * 100
de_noised_image = de_noised_image.view(256, 256)
inputpic = inputpic.view(256, 256).cpu()
de_noised_image = de_noised_image.detach()
de_noised_image = de_noised_image.cpu().numpy()
print("Processed Image")
fig, ax = plt.subplots(2, 2)
ax[0][0].imshow(de_noised_image, cmap="plasma_r")
ax[0][0].set_title("De-Noised Image")
ax[0][1].imshow(inputpic, cmap="plasma_r")
ax[0][1].set_title("Noisy Image")
ax[1][0].imshow(self.original, cmap="plasma_r")
ax[1][0].set_title("Ground Image")
ax[1][1].hist(de_noised_image, bins=25)
ax[1][1].set_title("De-Noised Image Histogram")
fig.suptitle(
"Image Size: 256 x 256\nNoise Level: {}%\nAccuracy: {:.2f}%".format(noise_level, loss),
fontsize=16,
y=0.9,
)
plt.show()
def dNoise(self, image):
print("Loaded Model")
model = ed().to(self.device)
model.eval()
model.load_state_dict(torch.load(f=self.model_path))
image = np.array(image, dtype=float)
image = torch.tensor(image, dtype=torch.float32).view(1, 1, 256, 256)
image = image.type(torch.cuda.FloatTensor)
de_noised_image = model(image)
loss = loss_fn(de_noised_image, image)
loss = (1 - loss.item()) * 100
de_noised_image = de_noised_image.view(256, 256)
de_noised_image = de_noised_image.detach()
de_noised_image = de_noised_image.cpu().numpy()
return de_noised_image, loss
@staticmethod
def thresholdDNoise(input, x):
output_image = np.clip(input, 0, 1)
output_image[output_image < x] = 0
output_image[output_image >= x] = 1
return output_image
if __name__ == "__main__":
seed = random.randint(1, 100000000000)
x = random.randint(50, 200)
y = random.randint(50, 200)
noise_level = 80
print("({}, {})".format(x, y))
pic = np.array(generator.generateClean(256, 256, 5, seed, True))
noisy_pic = np.array(generator.generateNoise(256, 256, 5, noise_level, seed, True))
pic, noisy_pic = np.abs(pic), np.abs(noisy_pic)
ev = Environment(pic, noisy_pic, 50, center=(x, y))
masked = ev.generate()
vi = Visualizer("./DNoise/models/synthnav-model-0.pth", pic)
vi.dNoiseVis(masked)