forked from BooksHTML/gitpractice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjfirkins.tex
132 lines (121 loc) · 5.25 KB
/
jfirkins.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
\subsubsection{The form $\phi_{0,1}$ on $W$}
We now combine $\tilde{\psi}_{0,1}$ and $\tilde{\psi}_{0,1}'$ to
obtain an integrable and also square-integrable $W$-valued function
\[
\phi_{0,1} \in [L^2(W_{\R}) \otimes \wwedge{0} \mathfrak{m}^{\ast} \otimes W_{\C}]
\]
by
\begin{equation*}
\phi_{0,1}(x) = \tilde{\psi}_{0,1}(x) + \tilde{\psi}_{0,1}'(x)
\end{equation*}
and then also $\phi_{0,1}(x,s)$. Combining Lemmas
\ref{singularitiesofAandB}, \ref{singularitiesofA'andB'} and
\eqref{AB-eq}, \eqref{AB'-eq} we obtain
\begin{proposition}\label{phi-prop}
\begin{itemize}
\item[(i)] $B(x) + B'(x)$ is $C^2$ on the complement of the light-cone in $W$ and $C^2$ on nonzero $M$-orbits.
\item[(ii)] $A(x) + A'(x)$ is $C^1$ on the complement of the light-cone in $W$ and $C^1$ on nonzero $M$ orbits.
\item[(iii)] $X_{23}(B + B') = -(A + A')$ on all of $W$.
\end{itemize}
So for given $x$, the function $\phi_{0,1}(x,s)$ is a $C^1$-function on $D_W$ with values in $W_{\C}$.
\end{proposition}
The following theorem is fundamental for us. It is an immediate
consequence of the Lemmas~\ref{schluessel} and \ref{xi'closed}.
\begin{theorem}\label{local-phi}
The form $\varphi_{1,1}$ on $D_W$ is exact. Namely,
\[
d \phi_{0,1} = \varphi_{1,1}.
\]
Furthermore,
\[
L \phi_{0,1} = d \psi_{0,1}.
\]
\end{theorem}
\noindent{\bf Proposition. }
The function $\phi_{0,1}$ is an eigenfunction of $K'=\SO(2)$ of weight $2$ under the Weil representation. More precisely,
\[
\omega(k') \phi_{0,1} = \chi^2(k')\phi_{0,1},
\]
where $\chi$ is the standard character of $\SO(2) \simeq U(1)$.
\vskip 0.2in
\begin{proof}
It suffices to show this for one component of $\phi_{0,1}$, that
is, the function $B(x)+B'(x)$. Then the assertion has been already
proved in \S 2.3 by showing that $B(x)+B'(x)$ is an eigenfunction
under the Fourier transform. We give here an infinitesimal proof.
Since $\omega(k')$ acts essentially as Fourier transform and $B+B'$
is $L^1$, we see that $\omega(k')(B+B')$ is continuous. Hence it
suffices to establish the corresponding current equality
$[\omega(k')(B+B')] = \chi^2(k')[B+B']$, since continuous functions
coincide when they induce the same current. The infinitesimal
generator of $K'$ acts by $
H:=\frac{-i}{4\pi} \left(\tfrac{\partial^2}{\partial{x_2^2}} - \tfrac{\partial^2}{\partial{x_3^2}}\right) + \pi i (x_2^2-x_3^2)$,
and a straightforward calculation immediately shows
\[
H B' = 2i B' \qquad \text{and} \qquad H {B} = 2i {B},
\]
outside the singularity $x_2^2-x_3^2=0$.
\begin{comment}
For $B$, we have
\[
B(x) =- \frac{1}{2 \sqrt{2} \pi} e^{-\pi(x_2^2+ x_3^2)} + \frac{1}{2 \sqrt{\pi}}|x_3| \Gamma(\tfrac12,2 \pi x_3^2) e^{ -\pi(x_2^2- x_3^2)},
\]
and we denote the second summand by $\tilde{B}(x)$. One easily sees that the first summand is annihilated by
$\frac{-i}{4\pi} \square + \pi i r^2$. For $\tilde{B}(x)$, we first see
\[
\frac{\partial}{\partial x_3} \tilde{B}(x) = \frac{1}{x_3} \tilde{B}(x) -\sqrt{2}x_3 e^{-\pi(x_2^2+ x_3^2)}.
+ 2\pi x_3 \tilde{B}(x),
\]
again away from the singularity $x_3=0$. Indeed, this follows easily from $\frac{\partial}{\partial x_3} \Gamma(\tfrac12,2 \pi x_3^2) = - 2 \sqrt{2\pi} \sgn(x_3) e^{-2 \pi x_3^2}$. A little calculation then gives
\begin{align*}
\frac{\partial^2}{\partial x_3^2} \tilde{B}(x) = 6 \pi \tilde{B}(x) - 2\sqrt{2} e^{ -\pi(x_2^2+x_3^2)} +(2\pi)^2 x_3^2 \tilde{B}(x).
\end{align*}
Then
\[
\frac{-i}{4\pi} \square \tilde{B}(x) = -\pi i r^2 \tilde{B}(x) + 2i \tilde{B}(x) - 2i \frac{1}{2\sqrt{2}\pi} e^{ -\pi(x_2^2+x_3^2)}.
\]
In conclusion,
\[
H {B}(x) = 2i {B}(x),
\]
again, outside the singularity.
\end{comment}
Now we consider the currents $H[B]$ and $H[B']$. An easy calculation
using that $B$ and $B'$ are $C^2$ up to $|x_3|e^{-\pi(x_2^2-x_3^2)}$
shows that for a test function $f$ on $W$ we have
\begin{align*}
H[B](f) &= [HB](f) + \int_{0}^{\infty} e^{-\pi x_2^2} f(x_2,0)dx_2, \\
H[B'](f) &= [HB'](f) - \int_{0}^{\infty} e^{-\pi x_2^2} f(x_2,0) dx_2.
\end{align*}
Thus $H[B+B'] = [H(B+B')]= 2i[B+B']$ as claimed.
\end{proof}
\ \\[12pt]
\textbf{5.2.3 The map $\iota_P$}\label{iotaP}
\\[10pt]
We define a map
\[
\iota_P: \calS(W_{\R}) \otimes \wwedge{i} \mathfrak{m}^{\ast} \otimes W_{\C} \to \calS(W_{\R}) \otimes \wwedge{i+1} \left( \mathfrak{m}^{\ast} \oplus \mathfrak{n}^{\ast} \right)
\]
by
\[
\iota_P(\varphi \otimes \omega \otimes w) = \varphi \otimes \left((\omega \wedge (w \wedge u')\right).
\]
Here we used the isomorphism $\mathfrak{n} \simeq W \wedge \R u \in
\bigwedge^{2} V_\R \simeq \mathfrak{g}$ and identify $W$ with its
dual via the bilinear form $(\,,\,)$ so that $\mathfrak{n}^{\ast}
\simeq W \wedge \R u'$. In \cite{FMres}, Section ~6.2 we explain
that $\iota_P$ is a map of Lie algebra complexes. Hence we obtain
a map of complexes
\[
[\calS(W_{\R}) \otimes \calA^i(D_W) \otimes W_{\C}]^M \to [\calS(W_{\R}) \otimes \calA^{i+1}(e(P))]^{NM},
\]
which we also denote by $\iota_P$. Here $N$ acts trivially on
$\calS(W_{\R})$. Explicitly, the vectors $e_2$ and $e_3$ in $W$ map
under $\iota_P$ to the left-invariant $1$-forms
\[
e_2 \mapsto \cosh(s)dw_2 - \sinh(s)dw_3 \qquad e_3 \mapsto \sinh(s)dw_2 - \cosh(s)dw_3
\]
with the coordinate functions $w_2,w_3$ on $W$ defined by
$w=w_2e_2+w_3e_3$. We apply $\iota_P$ to the forms on $W$ of this
section, and we obtain $\varphi_{1,1}^P$, $\phi_{0,1}^P$, $\psi_{0,1}^P$,
and ${\psi'}_{0,1}^P$.