-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate_complexes_from_sequences.py
800 lines (724 loc) · 34 KB
/
generate_complexes_from_sequences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
from importlib_metadata import sys, warnings
import os
import argparse
import json
import glob
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from tqdm import tqdm
from dask.distributed import Client, get_client
from dask.distributed import Client
from dask_jobqueue import SLURMCluster
import pyrosetta.distributed.dask
from pyrosetta import *
from src.hallucination.utils.pyrosetta_utils \
import fast_relax_pose_complex,\
relax_pose, mutate_pose, align_to_complex
from src.util.pdb import get_pdb_numbering_from_residue_indices
from src.hallucination.utils.util\
import get_indices_from_different_methods,\
comma_separated_chain_indices_to_dict
from src.hallucination.utils.interfacemetrics_plotting_utils \
import iam_score_df_from_pdbs, plot_scores_and_select_designs, scatter_hist,\
select_best_designs_by_sum
from src.hallucination.utils.sequence_utils import sequences_to_logo_without_weblogo
from src.hallucination.utils.rmsd_plotting_utils import threshold_by_rmsd_filters,\
write_fastas_for_alphafold2, plt_ff_publication_for_run
init_string = "-mute all -check_cdr_chainbreaks false -detect_disulf true"
pyrosetta.init(init_string)
def plot_dG(df_dg, outfile, min_base_dg=None):
theme = {'axes.grid': True,
'grid.linestyle': '',
'xtick.labelsize': 18,
'ytick.labelsize': 18,
"font.weight": 'regular',
'xtick.color': 'black',
'ytick.color': 'black',
"axes.titlesize": 20,
"axes.labelsize": 18
}
import matplotlib
matplotlib.rcParams.update(theme)
fig = plt.figure(figsize=(5, 4))
sns.histplot(data=df_dg, x='dG', stat="probability")
if min_base_dg is not None:
plt.axvline(min_base_dg, ls='--', lw=2.0, c='black', zorder=1)
ax = plt.gca()
for pos in ['top', 'bottom', 'right', 'left']:
ax.spines[pos].set_edgecolor('k')
plt.xlabel('dG (REU)')
plt.ylabel('P(dG)')
plt.tight_layout()
plt.savefig(outfile, transparent=True, dpi=600)
plt.close()
fig = plt.figure(figsize=(5, 4))
df_dg_neg = df_dg[df_dg['dG'] < -10.0]
sns.histplot(data=df_dg_neg, x='dG', stat="probability")
if min_base_dg is not None:
plt.axvline(min_base_dg, ls='--', lw=2.0, c='black', zorder=1)
ax = plt.gca()
for pos in ['top', 'bottom', 'right', 'left']:
ax.spines[pos].set_edgecolor('k')
plt.xlabel('dG (REU)')
plt.ylabel('P(dG)')
plt.tight_layout()
plt.savefig(outfile.replace('.png', '') + '_neg.png',
transparent=True,
dpi=600)
plt.close()
fig = plt.figure(figsize=(5, 4))
df_dg_neg = df_dg[df_dg['dG'] < -10.0]
sns.histplot(data=df_dg_neg, x='dG', stat="count")
if min_base_dg is not None:
plt.axvline(min_base_dg, ls='--', lw=2.0, c='black', zorder=1)
ax = plt.gca()
for pos in ['top', 'bottom', 'right', 'left']:
ax.spines[pos].set_edgecolor('k')
plt.xlabel('dG (REU)')
plt.ylabel('Count(dG)')
plt.tight_layout()
plt.savefig(outfile.replace('.png', '') + '_neg_count.png',
transparent=True,
dpi=600)
plt.close()
def compile_and_plot_results(basename_data,
prev,
last,
wt_dG='wt_min_dG.json',
indices_hal=[],
target_pdb=''):
dict_pattern = '{}/min_dG_decoys_{{}}.json'.format(basename_data)
seq_dict_files = [
dict_pattern.format(i) for i in range(prev, last)
if os.path.exists(dict_pattern.format(i))
]
seq_dicts = [
json.loads(open(seq_dict, 'r').read()) for seq_dict in seq_dict_files
]
dfs = [pd.DataFrame.from_dict(seq_dict, orient='index')
for seq_dict in seq_dicts]
df_dg = pd.concat(dfs)
df_dg['itraj'] = df_dg.index
basename_results = os.path.join(basename_data, 'results')
os.makedirs(basename_results, exist_ok=True)
outfile_df = os.path.join(basename_results,
'dg_min_{}-{}.csv'.format(prev, last))
df_dg.to_csv(outfile_df, ',')
dict_pattern = '{}/all_decoys_{{}}.json'.format(basename_data)
seq_dict_files = [
dict_pattern.format(i) for i in range(prev, last)
if os.path.exists(dict_pattern.format(i))
]
dfs = [pd.DataFrame.from_dict(json.loads(open(seq_dict, 'r').read()), orient='index')
for seq_dict in seq_dict_files]
df_all = pd.concat(dfs)
df_all['itraj'] = df_all.index
outfile_df = os.path.join(basename_results,
'decoys_scores_{}-{}.csv'.format(prev, last))
df_all.to_csv(outfile_df, ',')
outfile_dg_plot = os.path.join(basename_results,
'dg_hist_{}-{}.png'.format(prev, last))
if os.path.exists(wt_dG):
wt_dG_dict = json.loads(open(wt_dG, 'r').read())
wt_dg_value = wt_dG_dict['-1']['dG']
dg_improved = df_dg[df_dg['dG'] < (wt_dg_value + 5)]
dg_worse = df_dg[df_dg['dG'] > (wt_dg_value + 5)]
dg_improved_sorted = dg_improved.sort_values(by='dG',
ascending=True)
outfile_improved = os.path.join(
basename_results,
'improved_dG_sequences_{}-{}.csv'.format(prev, last))
with open(outfile_improved, 'w') as f:
f.write('filename,dG,seq\n')
for _, row in dg_improved_sorted.iterrows():
f.write('{},{},{}\n'.format(row['pdb'], row['dG'],
row['seq']))
plot_dG(df_dg, outfile_dg_plot, wt_dg_value)
else:
plot_dG(df_dg, outfile_dg_plot)
if not indices_hal == [] and os.path.exists(wt_dG):
dict_residues = {"reslist": indices_hal}
print('target_pdb ', target_pdb)
if os.path.exists(target_pdb):
dict_residues["labellist"] = \
get_pdb_numbering_from_residue_indices(target_pdb, indices_hal)
print(dict_residues)
seq_slices = list(dg_improved_sorted["seq"])
if len(seq_slices) > 0:
assert len(seq_slices[0]) == len(indices_hal)
outfile = os.path.join(
basename_results,
'logo_dG_improved_threshold{}_{}-{}.png'.format(wt_dg_value + 5, prev,
last))
sequences_to_logo_without_weblogo(seq_slices,
dict_residues,
outfile_logo=outfile)
seq_slices = list(dg_worse["seq"])
if len(seq_slices) > 0:
assert len(seq_slices[0]) == len(indices_hal)
outfile = os.path.join(
basename_results,
'logo_dG_worse_threshold{}_{}-{}.png'.format(wt_dg_value + 5, prev,
last))
sequences_to_logo_without_weblogo(seq_slices,
dict_residues,
outfile_logo=outfile)
def output_filtered_designs(csv_dg, csv_rmsd,
target_pdb,
indices_hal=[],
rmsd_filter='H3,1.8',
rmsd_filter_json='',
outdir='.',
suffix='DeepAb'
):
os.makedirs(outdir, exist_ok=True)
df_dg = pd.read_csv(csv_dg, delimiter=',')
df_dg['design_id'] = \
[int(os.path.basename(t).split('.pdb')[0].split('_')[-2])
for t in list(df_dg['filename'])]
df_ff = pd.read_csv(csv_rmsd)
if rmsd_filter != '':
x = rmsd_filter.split(',')[0]
outfile_png = os.path.join(outdir, 'histrmsdff-{}.png'.format(suffix))
plt_ff_publication_for_run(csv_rmsd, x=x, outfile=outfile_png)
outfile = os.path.join(
outdir, 'df_ff-{}_thresholded_{{}}.csv'.format(suffix))
df_ff_thr, rmsd_suffix = threshold_by_rmsd_filters(df_ff, rmsd_filter=rmsd_filter,
rmsd_filter_json=rmsd_filter_json,
outfile=outfile)
df_dg_ff_thr = pd.merge(df_dg, df_ff_thr, on=[
'design_id'], suffixes=['', '_ff'])
outfile = os.path.join(
outdir, 'df_ff-{}_dg_thresholded_{}.csv'.format(suffix, rmsd_suffix))
df_dg_ff_thr.to_csv(outfile)
outfile_png = os.path.join(
outdir, 'df_ff-{}_thresholded_{}.png'.format(suffix, rmsd_suffix))
if rmsd_filter != '':
x = rmsd_filter.split(',')[0]
outfile_png = os.path.join(
outdir, 'histrmsdff-{}_thresholded_{}.png'.format(suffix, rmsd_suffix))
plt_ff_publication_for_run(outfile.format(
rmsd_suffix), x=x, outfile=outfile_png)
sequences_thresholded = list(df_dg_ff_thr['seq'])
print('{} sequences meet the thresholds.'.format(len(sequences_thresholded)))
if len(sequences_thresholded) > 0:
dict_residues = {'reslist': indices_hal}
labellist = \
get_pdb_numbering_from_residue_indices(target_pdb, indices_hal)
dict_residues.update({'labellist': labellist})
outfile_logo = \
os.path.join(
outdir, 'logo_ff-{}_dg_thresholded_rmsd{}.png'.format(suffix, rmsd_suffix))
sequences_to_logo_without_weblogo(sequences_thresholded, dict_residues=dict_residues,
outfile_logo=outfile_logo)
# write inputs for running alphafold
outdir_af2 = os.path.join(
outdir, 'ff-{}_ddg_thresholded_rmsd{}'.format(suffix, rmsd_suffix))
os.makedirs(outdir_af2, exist_ok=True)
write_fastas_for_alphafold2(list(df_dg_ff_thr['filename']), outdir_af2)
# interface metrics
select_by = ['dG_separated']
design_pdbs = list(set(list(df_dg_ff_thr['filename'])))
df_iam_mutants = iam_score_df_from_pdbs(design_pdbs)
print('iam: ', df_iam_mutants)
df_iam_ref = iam_score_df_from_pdbs([target_pdb])
n_all = min(50, len(design_pdbs))
pdb_dir = os.path.join(outdir, 'interface_metrics_pdbs')
os.makedirs(pdb_dir, exist_ok=True)
best_decoys = select_best_designs_by_sum(df_iam_mutants, by=select_by,
n=n_all, pdb_dir=pdb_dir,
out_path=pdb_dir)
selected_decoys_dir = os.path.join(outdir, 'selected_decoys_iam')
os.makedirs(selected_decoys_dir, exist_ok=True)
outfile = os.path.join(selected_decoys_dir, "scatterplot_dgneg.png")
df_iam_mutants_neg = df_iam_mutants[df_iam_mutants['dG_separated'] < 0.0]
if 'dG_separated' in df_iam_ref.columns:
scatter_hist(df_iam_mutants_neg, ref=df_iam_ref,
out=outfile, highlight=best_decoys, by=select_by)
out_csv_iam = os.path.join(
outdir, 'df_ref_iam.csv'.format(suffix, rmsd_suffix))
df_iam_ref.to_csv(out_csv_iam)
else:
scatter_hist(df_iam_mutants_neg, out=outfile,
highlight=best_decoys, by=select_by)
df_combined = pd.merge(df_dg_ff_thr, df_iam_mutants, on=['filename'])
out_csv_iam = os.path.join(
outdir, 'df_ff-{}_dg_iam_thresholded_rmsd{}.csv'.format(suffix, rmsd_suffix))
df_combined.to_csv(out_csv_iam)
df_best_indices = df_iam_mutants.loc[best_decoys]
df_combined_best = pd.merge(
df_dg_ff_thr, df_best_indices, on=['filename'])
out_csv_iam = \
os.path.join(selected_decoys_dir,
'df_ff-{}_dg_thresholded_rmsd{}_bestdecoys.csv'.format(suffix, rmsd_suffix))
df_combined_best.to_csv(out_csv_iam)
sequences_iam = list(df_combined_best['seq'])
outfile_logo = os.path.join(outdir,
'logo_ff-{}_dg_thresholded_rmsd{}_iam-top{}.png'.format(suffix, rmsd_suffix, n_all))
sequences_to_logo_without_weblogo(sequences_iam, dict_residues=dict_residues,
outfile_logo=outfile_logo)
def mutated_complexes_from_sequences(pdb,
sequences_file,
res_positions,
chains,
basename='.',
dump_mutate=True,
pre_mutated=False,
use_cluster=False,
decoys=2,
skip_relax=False,
dry_run=False,
prev=0,
last=1000000,
basename_ff='',
docking_res=[],
csv_rmsd='',
rmsd_filter='',
rmsd_filter_json=''):
"""Generates pdb with given mutations from base pdb"""
filtered_design_ids = None
if csv_rmsd != '':
df_ff = pd.read_csv(csv_rmsd)
outfile = os.path.join(
basename, 'filtered_designs_for_dG_calculation.csv')
df_ff_thr, _ = threshold_by_rmsd_filters(df_ff, rmsd_filter=rmsd_filter,
rmsd_filter_json=rmsd_filter_json,
outfile=outfile)
filtered_design_ids = list(set(list(df_ff_thr['design_id'])))
print('Number of designs that meet rmsd filter: ',
len(filtered_design_ids))
if len(filtered_design_ids) < 1:
print('No design has rmsd below specified rmsd filter. Exiting.')
sys.exit()
if len(filtered_design_ids) < 10:
warnings.warn(
'!!! Less than 10 designs have rmsd below specified rmsd filter. !!!')
base_pose = pose_from_pdb(pdb)
lines = open(sequences_file, 'r').readlines()
sequences = [t.rstrip() for t in lines if t.find('>') == -1]
try:
ids = [int(t.split('_')[1]) for t in lines if (t.find('>') != -1)]
assert len(ids) == len(sequences)
ids_sequences_tuples = [(id, seq) for id, seq in zip(ids, sequences)]
if not filtered_design_ids is None:
ids_sequences_tuples = [
(id, seq) for id, seq in ids_sequences_tuples if id in filtered_design_ids]
dsequences = {}
for (id, seq) in ids_sequences_tuples:
dsequences[id] = seq
except:
dsequences = {}
print('Number of designs: ', len(sequences))
# Important - 1 indexed so add one
ros_positions = [t + 1 for t in res_positions]
pdb_basename = pdb.split('/')[-1]
if dump_mutate:
if not pre_mutated:
basename_mutate = os.path.join(basename, 'mutants')
else:
basename_mutate = os.path.join(basename, 'mutants_ff_aligned')
if not os.path.exists(basename_mutate):
os.makedirs(basename_mutate, exist_ok=True)
outfile_mutate = os.path.join(
basename_mutate,
pdb_basename.rstrip('.pdb') + '_design_{}.pdb')
if pre_mutated:
if not os.path.exists(basename_ff):
raise FileNotFoundError('For pre_mutated option, \
provide valid forward folded pdbs {}'.format(basename_ff))
if docking_res == []:
# make continuous
max_ros_pos = max(ros_positions)
min_ros_pos = min(ros_positions)
docking_res = [min_ros_pos, max_ros_pos]
basename_packed = os.path.join(basename, 'relaxed_ff_bb_mutants')
basename_wt_data = os.path.join(basename, 'relaxed_bb_wt_data')
new_best_decoy = os.path.join(
basename, pdb_basename.rstrip('.pdb') + '_{}.relaxed_bb.pdb')
new_best_decoy_wt = os.path.join(
basename, pdb_basename.rstrip('.pdb') + '.wt.relaxed_bb.pdb')
else:
basename_packed = os.path.join(basename, 'relaxed_mutants')
basename_wt_data = os.path.join(basename, 'relaxed_wt_data')
new_best_decoy = os.path.join(
basename, pdb_basename.rstrip('.pdb') + '_{}.relaxed.pdb')
new_best_decoy_wt = os.path.join(
basename, pdb_basename.rstrip('.pdb') + '.wt.relaxed.pdb')
docking_res = []
if not os.path.exists(basename_packed):
os.makedirs(basename_packed, exist_ok=True)
outfile_relax = os.path.join(basename_packed,
pdb_basename.rstrip('.pdb') + '_relax_{}.pdb')
dict_scores = {}
min_dG = {}
outfile_int_dg_wt = os.path.join(basename_wt_data, 'min_dG_decoys_wt.json')
print('Starting from: ', prev)
if (not skip_relax) and prev == 0:
print('Relaxing wt ...')
os.makedirs(basename_wt_data, exist_ok=True)
input_packed_poses = []
if not (use_cluster):
for index_decoy in range(decoys):
score_tuple = fast_relax_pose_complex(
pdb,
chains,
index_decoy,
outfile=outfile_relax.format('input_%03d' % (index_decoy)),
dry_run=dry_run,
dock=pre_mutated,
induced_docking_res=docking_res)
input_packed_poses.append(score_tuple)
else:
for index_decoy in range(decoys):
client = get_client()
score_tuple = client.submit(fast_relax_pose_complex,
pdb,
chains,
index_decoy,
outfile=outfile_relax.format(
'input_%03d' % (index_decoy)),
dry_run=dry_run,
dock=pre_mutated,
induced_docking_res=docking_res)
input_packed_poses.append(score_tuple)
input_packed_poses = client.gather(input_packed_poses)
sorted_score_input_poses = sorted(input_packed_poses,
key=lambda p: p[1])
sorted_dg_input_poses = sorted(input_packed_poses, key=lambda p: p[2])
min_input_score = sorted_score_input_poses[0][1]
min_input_dg = sorted_dg_input_poses[0][2]
print('Min Input Score: ', min_input_score)
print('Min input dg: ', min_input_dg)
dict_scores[-1] = {
'decoyid': [t[0] for t in sorted_dg_input_poses],
'total_score': [t[1] for t in sorted_dg_input_poses],
'dG': [t[2] for t in sorted_dg_input_poses],
'seq': ''
}
outfile_int_all = os.path.join(basename_wt_data, 'all_decoys_wt.json')
open(outfile_int_all, 'w').write(json.dumps(dict_scores))
outfile_best_decoy = outfile_relax.format('input_%03d' %
(sorted_dg_input_poses[0][0]))
os.system('cp {} {}'.format(outfile_best_decoy, new_best_decoy_wt))
min_dG[-1] = {
'dG':
sorted_dg_input_poses[0][2],
'decoyid':
sorted_dg_input_poses[0][0],
'pdb':
outfile_relax.format('input_%03d' %
(sorted_dg_input_poses[0][0])),
'seq':
''
}
open(outfile_int_dg_wt, 'w').write(json.dumps(min_dG))
max_seq = min([len(sequences), last])
if dry_run:
max_seq = 2
if not pre_mutated:
basename_data = os.path.join(basename, 'relaxed_mutants_data')
else:
basename_data = os.path.join(basename, 'relaxed_ff_bb_mutants_data')
os.makedirs(basename_data, exist_ok=True)
if dsequences != {}:
traj_ids = [t for t in dsequences if (t < max_seq) and (t >= prev)]
traj_ids.sort()
else:
traj_ids = [t for t in range(sequences) if (
t < max_seq) and (t >= prev)]
traj_ids.sort()
for iseq in tqdm(traj_ids):
seq = dsequences[iseq]
print(iseq, seq)
min_dG = {}
dict_scores = {}
if not pre_mutated:
_ = mutate_pose(base_pose, ros_positions, seq,
outfile_mutate.format('%03d' % iseq))
else:
ff_pose = pose_from_pdb('{}/pdb_{}.deepAb.pdb'.format(
basename_ff, '%03d' % iseq))
align_to_complex(ff_pose, base_pose, chains,
outfile_mutate.format('%03d' % iseq))
if skip_relax:
continue
outfile_int_dg = os.path.join(basename_data,
'min_dG_decoys_{}.json'.format(iseq))
if os.path.exists(outfile_int_dg):
# skip if already processed
continue
relaxed_poses = relax_pose(outfile_mutate.format('%03d' % iseq),
outfile_relax,
iseq,
chains,
seq=seq,
use_cluster=use_cluster,
decoys=decoys,
dry_run=dry_run,
dock=pre_mutated,
induced_docking_res=docking_res)
packed_poses_sorted_dg = sorted(relaxed_poses, key=lambda tup: tup[2])
print(iseq, ' Min decoy dg: ', packed_poses_sorted_dg[0][2])
# Save data
dict_scores[iseq] = {
'decoyid': [t[0] for t in packed_poses_sorted_dg],
'total_score': [t[1] for t in packed_poses_sorted_dg],
'dG': [t[2] for t in packed_poses_sorted_dg],
'seq': seq
}
outfile_int_all = os.path.join(basename_data,
'all_decoys_{}.json'.format(iseq))
open(outfile_int_all, 'w').write(json.dumps(dict_scores))
min_dG[iseq] = {
'dG':
packed_poses_sorted_dg[0][2],
'decoyid':
packed_poses_sorted_dg[0][0],
'pdb':
outfile_relax.format('%03d_%03d' %
(iseq, packed_poses_sorted_dg[0][0])),
'seq':
seq
}
outfile_best_decoy = outfile_relax.format('%03d_%03d' %
(iseq, packed_poses_sorted_dg[0][0]))
os.system('cp {} {}'.format(
outfile_best_decoy, new_best_decoy.format(iseq)))
open(outfile_int_dg, 'w').write(json.dumps(min_dG))
compile_and_plot_results(basename_data, prev, max_seq, outfile_int_dg_wt)
# Interface metrics
if not pre_mutated:
basename_interface_metrics = os.path.join(
basename, 'interface_metrics')
else:
basename_interface_metrics = os.path.join(
basename, 'interface_metrics_ff_bb')
os.makedirs(basename_interface_metrics, exist_ok=True)
design_pdbs = list(sorted(glob.glob(new_best_decoy.replace('{}', '*'))))
mutants_interface_metrics_file = os.path.join(basename_interface_metrics,
'interface_metrics_all.csv')
df_mutants = iam_score_df_from_pdbs(
design_pdbs, mutants_interface_metrics_file)
ref_interface_metrics_file = os.path.join(basename_interface_metrics,
'interface_metrics_wt.csv')
ref_pdbs = list(sorted(glob.glob(new_best_decoy_wt)))
df_ref = iam_score_df_from_pdbs(ref_pdbs, ref_interface_metrics_file)
by = ['dG_separated']
plot_scores_and_select_designs(df_mutants, df_ref, out_path=basename_interface_metrics,
pdb_dir=basename_interface_metrics,
by=by, n=25)
def get_args():
desc = ('''
Distributed relax and deltaG (with Rosetta) calculation for designed sequences.
Designed sequences -> relaxed antibody/complex (pdbs) -> total score/dg calculation.
Example usage:
python3 generate_complexes_from_sequences.py <target complex pdb chothia-numbered>
<hallucination_results_dir>/sequences_indices.fasta
--get_relaxed_complex # relax and get complex dg
--decoys 2 # number of decoys for relax: 20 is a good number to start with>
--outdir # output directory
--indices h:95,96,97,98,99,100,100A,100B,100C,101
--partner_chains HL_X #chain names of antibody and antigen
# Recommended option
--slurm_cluster_config config.json for slurm cluster
''')
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('target_pdb',
type=str,
help='path to target structure chothia numbered pdb file.\
For complex structures, provide pdb for the antibody-antigen complex.\
')
parser.add_argument(
'designed_seq_file',
type=str,
help='Sequence file from process_designs.py (sequences_indices.fasta for complex generation);\
')
parser.add_argument('--get_relaxed_complex',
action='store_true',
default=False,
help='Make mutations to target pdb from sequence file,\
relax interface, calc dG, get best dG designs')
parser.add_argument(
'--plot_consolidated_dG',
action='store_true',
default=False,
help='compile dG calculated for sequences into a plot.\
Path for individual data files assumed to be same as \
--outdir + /virtual_binding/relaxed_mutants_data'
)
parser.add_argument('--decoys',
type=int,
default=2,
help='number of decoys per design for relax')
parser.add_argument('--start',
type=int,
default=0,
help='continuation run - start from Nth design')
parser.add_argument('--end',
type=int,
default=10000000,
help='end at Nth design')
parser.add_argument('--outdir',
type=str,
default='./',
help='path to sequences dir')
parser.add_argument('--cdr_list',
type=str,
default='',
help='comma separated list of cdrs: l1,h2')
parser.add_argument('--framework',
action='store_true',
default=False,
help='design framework residues. Default: false')
parser.add_argument('--indices',
type=str,
default='',
help='comma separated list of chothia numbered residues to design: h:12,20,31A/l:56,57')
parser.add_argument('--exclude',
type=str,
default='',
help='comma separated list of chothia numbered residues to exclude from design: h:31A,52,53/l:97,99')
parser.add_argument('--hl_interface',
action='store_true',
default=False,
help='hallucinate hl interface')
parser.add_argument(
'--slurm_cluster_config',
type=str,
default='',
help='Dictionary for setting up slurm cluster. Recommended.\
See example config.json in README.md. Please modify for your slurm cluster.\
If not using, consider using fewer decoys for DeepAb e.g. 2.')
parser.add_argument('--partner_chains',
type=str,
default='',
help='Specify complex chains: Eg. HL_X; \
where HL chains form one interacting partner\
and X the other')
parser.add_argument('--dry_run',
action='store_true',
default=False,
help='run everything except relax.apply().')
parser.add_argument('--skip_relax',
action='store_true',
default=False,
help='run everything except relax.apply().')
parser.add_argument('--slurm_scale',
type=int,
default=10,
help='number of clients (dask) on slurm')
parser.add_argument('--scratch_space',
type=str,
default='./tmp_scratch',
help='scratch space for dask')
parser.add_argument('--csv_forward_folded',
default='',
help='csv file generated by --plot_consolidated_funnels\
.Only use designs that were filtered to fold into target structure\
from forward folding runs.'
)
parser.add_argument('--rmsd_filter',
default='H3,1.8',
help='specify metric and threshold separated by a comma.\
Metric list: OCD, H1, H2, H3, L1, L2, L3, HFr, LFr'
)
parser.add_argument('--rmsd_filter_json',
default='',
help='specify multiple metrics and threshold as a json dictionary.\
Metric list: OCD, H1, H2, H3, L1, L2, L3, HFr, LFr'
)
parser.add_argument(
'--path_forward_folded',
type=str,
default='',
help='path to forward folded ab structures from forward folding run.\
If you want to use forward folded structures for virtual screening.\
Not recommended.')
return parser.parse_args()
def get_hal_indices(args):
dict_indices = {}
dict_exclude = {}
if args.indices != '':
indices_str = args.indices
print(indices_str)
dict_indices = comma_separated_chain_indices_to_dict(indices_str)
if args.exclude != '':
indices_str = args.exclude
dict_exclude = comma_separated_chain_indices_to_dict(indices_str)
indices_hal = get_indices_from_different_methods(
args.target_pdb,
cdr_list=args.cdr_list,
framework=args.framework,
hl_interface=args.hl_interface,
include_indices=dict_indices,
exclude_indices=dict_exclude)
print("Indices hallucinated: ", indices_hal)
return indices_hal
if __name__ == '__main__':
args = get_args()
import json
use_cluster_decoy = False
if args.slurm_cluster_config != '':
scratch_dir = os.path.join(args.scratch_space)
os.system("mkdir -p {}".format(scratch_dir))
use_cluster_decoy = True
config_dict = json.load(open(args.slurm_cluster_config, 'r'))
cluster = SLURMCluster(**config_dict,
local_directory=scratch_dir,
job_extra=[
"-o {}".format(os.path.join(scratch_dir,
"slurm-%j.out"))
],
extra=pyrosetta.distributed.dask.worker_extra(
init_flags=init_string)
)
print(cluster.job_script())
cluster.adapt(minimum_jobs=min(args.decoys, 2),
maximum_jobs=min(args.decoys, args.slurm_scale))
client = Client(cluster)
if args.plot_consolidated_dG:
indices_hal = get_hal_indices(args)
wt_min_path = os.path.join(
args.outdir,
'virtual_binding/relaxed_wt_data/min_dG_decoys_wt.json')
if not os.path.exists(wt_min_path):
print("Did not find WT dg at {}".format(wt_min_path))
basename_mutant_data = os.path.join(
args.outdir, 'virtual_binding/relaxed_mutants_data')
if os.path.exists(basename_mutant_data):
compile_and_plot_results(basename_mutant_data,
args.start,
args.end,
wt_dG=wt_min_path,
indices_hal=indices_hal,
target_pdb=args.target_pdb)
if args.get_relaxed_complex:
pre_mutated = False
if args.path_forward_folded != '':
import glob
pre_mutated = True
assert os.path.exists(args.path_forward_folded)
ff_pattern = '{}/*.deepAb.pdb'.format(args.path_forward_folded)
assert len(glob.glob(ff_pattern)) > 0
indices_hal = get_hal_indices(args)
out_path_pdbs = os.path.join(args.outdir, 'virtual_binding')
if not os.path.exists(out_path_pdbs):
os.makedirs(out_path_pdbs, exist_ok=True)
mutated_complexes_from_sequences(args.target_pdb,
args.designed_seq_file,
indices_hal,
args.partner_chains,
pre_mutated=pre_mutated,
basename_ff=args.path_forward_folded,
basename=out_path_pdbs,
use_cluster=use_cluster_decoy,
decoys=args.decoys,
dry_run=args.dry_run,
skip_relax=args.skip_relax,
prev=args.start,
last=args.end,
csv_rmsd=args.csv_forward_folded,
rmsd_filter=args.rmsd_filter,
rmsd_filter_json=args.rmsd_filter_json
)