-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun.py
66 lines (58 loc) · 3.39 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import sys
import numpy as np
import pandas as pd
import torch
from libs.parser import Parser
from libs.controller import Controller
import models.mnist.hyper_parameters
import models.mnist.state_space_parameters as state_space_parameters
import libs.train_ as train_
replay_dictionary = pd.DataFrame(columns=['net',
'accuracy_best_val',
'accuracy_last_val',
'layer_no',
'train_flag'])
class Child(object):
def __init__(self, args, layer_no, controller):
global replay_dictionary
self.data = args.data #''' path to dataset '''
self.controller = controller
self.out, self.output,self.sum_prob = self.controller.generate_net_representation(layer_no)
self.hyperparams = self.controller.generate_hyperparams(self.out, layer_no)
hyperparams_string = str(self.hyperparams)
if hyperparams_string not in replay_dictionary['net'].values:
self.acc_best_val, self.acc_last_val, self.train_flag = train_.train_val_net(self.hyperparams, \
state_space_parameters, \
args.data)
print('best_val_acc:{}, last_val_acc:{} and train_flag:{}'.format(self.acc_best_val, \
self.acc_last_val, self.train_flag))
replay_dictionary = replay_dictionary.append(pd.DataFrame([[hyperparams_string, self.acc_best_val, self.acc_last_val, \
layer_no, self.train_flag]], columns=['net', 'accuracy_best_val', \
'accuracy_last_val', 'layer_no', 'train_flag']), ignore_index = True)
else:
print('net already present --')
self.acc_best_val = replay_dictionary[replay_dictionary['net']==hyperparams_string]['accuracy_best_val'].values[0]
self.acc_last_val = replay_dictionary[replay_dictionary['net']==hyperparams_string]['accuracy_last_val'].values[0]
self.train_flag = replay_dictionary[replay_dictionary['net']==hyperparams_string]['train_flag'].values[0]
print('best_val_acc:{}, last_val_acc:{} and train_flag:{}'.format(self.acc_best_val, \
self.acc_last_val, self.train_flag))
self.controller.train_controller(self.sum_prob, (self.acc_best_val ** 3)/float(layer_no*3)) #''' should be max val accuracy of last 5 epochs cubed '''
def get_controller(self):
return self.controller
def init_train_child_update_controller(args, layer_no, controller):
child_cnn = Child(args, layer_no, controller)
controller = child_cnn.get_controller()
return controller
def main():
args = Parser().get_parser().parse_args()
layer_no = state_space_parameters.layer_no
controller = Controller(args, state_space_parameters)
for arch_no in range(state_space_parameters.total_arch):
print('arch no.:{}, layer np.:{}'.format(arch_no, layer_no))
controller = init_train_child_update_controller(args, layer_no, controller)
if (arch_no+1) % 500 == 0:
layer_no += state_space_parameters.layer_increment
replay_dictionary.to_csv('./replayDict1.csv')
if __name__ == '__main__' :
main()