Start by downloading the Ollama application from the official website: Ollama Download. Once installed, Ollama will be running at: http://localhost:11434
Explore the various models available in the Ollama library: Ollama Library.
To run a model, use the following command:
ollama pull llama3.2
Recommended Models:
- Llama3.2
- Llava (Vision model)
Get your tavily api key by signing up at https://app.tavily.com/home
- Use qdrant cloud:
- Sign up at https://cloud.qdrant.io/
- Create your cluster
- Get url database URL and API key
- Run qdrant in local using docker:
docker run -p 6333:6333 -p 6334:6334 qdrant/qdrant
- Clone the repo
git clone https://github.com/SSK-14/WizSearch.git
- Install required libraries
- Create virtual environment
pip3 install virtualenv
python3 -m venv {your-venvname}
source {your-venvname}/bin/activate
- Install required libraries
pip3 install -r requirements.txt
- Activate your virtual environment
source {your-venvname}/bin/activate
- Set up your
config.yaml
file Update aconfig.yaml
file in root folder Refer. Add the following values:
model_list:
- model_name: llava
litellm_params:
model: "ollama/llava"
model_info:
supports_vision: True
- model_name: "llama3.2"
litellm_params:
model: "ollama_chat/llama3.2"
embeddings_model:
model_name: "mxbai-embed-large"
litellm_params:
model: "ollama/mxbai-embed-large"
dimensions: 512
- Create a
.env
file in root folder Refer Add the following values:
TAVILY_API_KEY=
QDRANT_URL=
Other optional keys can be added as per the requirements
- Running
streamlit run app.py