-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprimitives.py
202 lines (179 loc) · 7.69 KB
/
primitives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from copy import deepcopy
from struct import pack
from math import sqrt
class Face:
def __init__( self, v=None, vn=None, vt=None ):
if ( v == None ):
self.verts = []
else:
self.verts = v
if ( vn == None ):
self.norms = []
else:
self.norms = vn
if ( vt == None ):
self.uvs = []
else:
self.uvs = vt
def triangulate( self, vertices ):
"""Triangulates the face - returns a list of faces.
@param: vertices A list of vertices. These can be referenced to make
geometrically sophisticated decisions.
"""
if ( len( self.verts ) == 3 ):
return [ deepcopy( self ), ]
elif ( len( self.verts ) == 4 ):
# convert quad to triangles
# Two ways to triangulate. Pick the triangulation where the ratio of areas is
# as close to 1 as possible.
# Compute two pairs of triangles: A and B
a1 = ( vertices[ self.verts[0] - 1], vertices[ self.verts[1] - 1], vertices[ self.verts[2] - 1] )
a2 = ( vertices[ self.verts[2] - 1], vertices[ self.verts[3] - 1], vertices[ self.verts[0] - 1] )
b1 = ( vertices[ self.verts[0] - 1], vertices[ self.verts[1] - 1], vertices[ self.verts[3] - 1] )
b2 = ( vertices[ self.verts[1] - 1], vertices[ self.verts[2] - 1], vertices[ self.verts[3] - 1] )
# Compute the area of each triangle (in this case, (2 * area )^2)
# sufficient for the RATIO
areaA1 = ( a1[0] - a1[1] ).cross( a1[2] - a1[1] ).lengthSq()
areaA2 = ( a2[0] - a2[1] ).cross( a2[2] - a2[1] ).lengthSq()
areaB1 = ( b1[0] - b1[1] ).cross( b1[2] - b1[1] ).lengthSq()
areaB2 = ( b2[0] - b2[1] ).cross( b2[2] - b2[1] ).lengthSq()
if ( areaA2 > areaA1 ):
ratioA = areaA2 / areaA1
else:
ratioA = areaA1 / areaA2
if ( areaB2 > areaB1 ):
ratioB = areaB2 / areaB1
else:
ratioB = areaB1 / areaB2
if ( ratioA < ratioB ):
idx1 = ( 0, 1, 2 )
idx2 = ( 2, 3, 0 )
else:
idx1 = ( 0, 1, 3 )
idx2 = ( 1, 2, 3 )
# nowconstruct the faces
newFaces = []
norms1 = norms2 = uvs1 = uvs2 = None
verts1 = [ self.verts[ idx1[0] ], self.verts[ idx1[1] ], self.verts[ idx1[2] ] ]
verts2 = [ self.verts[ idx2[0] ], self.verts[ idx2[1] ], self.verts[ idx2[2] ] ]
if ( self.norms ):
norms1 = [ self.norms[ idx1[0] ], self.norms[ idx1[1] ], self.norms[ idx1[2] ] ]
norms2 = [ self.norms[ idx2[0] ], self.norms[ idx2[1] ], self.norms[ idx2[2] ] ]
if ( self.uvs ):
uvs1 = [ self.uvs[ idx1[0] ], self.uvs[ idx1[1] ], self.uvs[ idx1[2] ] ]
uvs2 = [ self.uvs[ idx2[0] ], self.uvs[ idx2[1] ], self.uvs[ idx2[2] ] ]
newFaces.append( Face( verts1, norms1, uvs1 ) )
newFaces.append( Face( verts2, norms2, uvs2 ) )
return newFaces
else:
newFaces = []
# blindly create a fan triangulation (v1, v2, v3), (v1, v3, v4), (v1, v4, v5), etc...
for i in range(1, len(self.verts) - 1):
verts = [ self.verts[0], self.verts[i], self.verts[i+1] ]
norms = None
if ( self.norms ):
norms = [self.norms[0], self.norms[i], self.norms[i+1]]
uvs = None
if ( self.uvs ):
uvs = [self.uvs[0], self.uvs[i], self.uvs[i+1]]
newFaces.append( Face( verts, norms, uvs ) )
return newFaces
def OBJFormat( self ):
"""Writes face definition in OBJ format"""
s = 'f '
vIndex = 0
for v in self.verts:
s += '%d' % v
if ( self.uvs ):
s += '/%d' % self.uvs[vIndex]
if ( self.norms ):
if (not self.uvs ):
s += '/'
s += '/%d' % self.norms[vIndex]
s += ' '
vIndex += 1
return s
def PLYAsciiFormat( self, useNorms = False, useUvs = False ):
"""Writes face definition in PLY format"""
s = '%d ' % (len(self.verts))
vIndex = 0
for v in self.verts:
s += '%d' % ( v - 1 )
## if ( self.uvs ):
## s += '/%d' % self.uvs[vIndex]
## if ( self.norms ):
## if (not self.uvs ):
## s += '/'
## s += '/%d' % self.norms[vIndex]
s += ' '
vIndex += 1
return s
def PLYBinaryFormat( self, useNorms = False, useUvs = False ):
"""Writes face definition in PLY format"""
s = pack('>b', len(self.verts) )
## vIndex = 0
for v in self.verts:
s += pack('>i', ( v - 1 ) )
## if ( self.uvs ):
## s += '/%d' % self.uvs[vIndex]
## if ( self.norms ):
## if (not self.uvs ):
## s += '/'
## s += '/%d' % self.norms[vIndex]
## vIndex += 1
return s
class Vertex:
def __init__( self, x, y, z ):
self.pos = (x, y, z)
def formatOBJ( self ):
"""Returns a string that represents this vertex"""
return "v %f %f %f" % ( self.pos[0], self.pos[1], self.pos[2] )
def asciiPlyHeader( self, count ):
"""Returns the header for this element in ply format"""
s = 'element vertex %d\n' % ( count )
s += 'property float x\n'
s += 'property float y\n'
s += 'property float z\n'
return s
def formatPLYAscii( self ):
"""Returns a string that represents this vertex in ascii ply format"""
return "%f %f %f" % ( self.pos[0], self.pos[1], self.pos[2] )
def binPlyHeader( self, count ):
"""Returns the header for this element in binary ply format"""
s = 'element vertex %d\x0a' % ( count )
s += 'property float x\x0a'
s += 'property float y\x0a'
s += 'property float z\x0a'
return s
def formatPlyBinary( self ):
"""Returns a string that represents this vertex in binary PLY format"""
return pack('>fff', v.x, v.y, v.z)
class ColoredVertex( Vertex ):
DEF_COLOR = ( 0, 60, 120 )
def __init__( self, color = None ):
Vertex.__init__( self )
if ( color == None ):
self.color = ColoredVertex.DEF_COLOR
else:
self.color = color
def asciiPlyHeader( self, count ):
"""Returns the header for this element in ply format"""
s = Vertex.asciiPlyHeader( self, count )
s += 'property uchar red\n'
s += 'property uchar green\n'
s += 'property uchar blue\n'
return s
def formatPLYAscii( self ):
"""Returns a string that represents this vertex in ascii ply format"""
return "%f %f %f %d %d %d" % ( self.pos[0], self.pos[1], self.pos[2],
self.color[0], self.color[1], self.color[2] )
def binPlyHeader( self, count ):
"""Returns the header for this element in binary ply format"""
s = Vertex.binPlyHeader( self, count )
s += 'property uchar red\x0a'
s += 'property uchar green\x0a'
s += 'property uchar blue\x0a'
return s
def formatPlyBinary( self ):
"""Returns a string that represents this vertex in binary PLY format"""
return Vertex.formatPlyBinary( self ) + pack('>BBB', color[0], color[1], color[2])