forked from ZonglinY/MOOSE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_intermediate_hypothesis_and_feedback.py
48 lines (33 loc) · 2.43 KB
/
check_intermediate_hypothesis_and_feedback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os, argparse
import torch
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_dir", type=str, default="./Checkpoints/claude_45bkg_4itr_bkgnoter5_indirect1_onlyindirect0_close0_ban0_baseline0_survey1_bkgInspPasgSwap0_hypSuggestor1", help="output directory")
parser.add_argument("--research_background_id", type=int, default=5, help="id of the research background being used to generate research hypotheses")
parser.add_argument("--hypothesis_id", type=int, default=0, help="id of those hypotheses generated from the research background. The typical range is [0, 3] or [0, 4].")
parser.add_argument("--hypothesis_refinement_round", type=int, default=0, help="refinement round of the hypothesis (present-feedback)")
args = parser.parse_args()
assert args.research_background_id >= 0 and args.research_background_id <= 49
assert args.hypothesis_refinement_round >= 0 and args.hypothesis_refinement_round <= 3
print("####### Parameters #######")
print("checkpoint_dir:", args.checkpoint_dir)
print("research_background_id:", args.research_background_id)
print("hypothesis_id:", args.hypothesis_id)
print("hypothesis_refinement_round:", args.hypothesis_refinement_round)
data = torch.load(os.path.join(args.checkpoint_dir, "background_inspiration_hypotheses.pt"))
research_background = data[2][args.research_background_id]
research_inspirations = data[6][research_background][0]
hypothesis = data[8][research_background][0][args.hypothesis_id][args.hypothesis_refinement_round]
present_feedback = data[10][research_background][0][hypothesis]
future_feedback = data[15][research_background][0][0]
print("\n####### Research background #######\n", research_background)
print("\n####### Research inspirations #######")
for cur_insp_id, cur_insp in enumerate(research_inspirations):
print("Inspiration {}: \t{}".format(cur_insp_id, cur_insp))
print("\n####### Future-feedback (suggestions/explanations to be used for hypothesis generation) #######")
print(future_feedback)
print("\n####### Hypothesis #######\n", hypothesis)
print("\n####### Present-feedback #######")
print("#### Reality Feedback ####\n{}\n\n#### Novelty Feedback ####\n{}\n\n#### Clarity Feedback ####\n{}".format(present_feedback[0], present_feedback[1], present_feedback[2]))
if __name__ == '__main__':
main()