forked from ZonglinY/MOOSE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_expert_eval.py
117 lines (95 loc) · 4.69 KB
/
read_expert_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import torch
import numpy as np
import pandas as pd
np.set_printoptions(precision=3)
# annotated_score: [n, 8, 3]
def load_annotated_data(root_data_dir, expert_file):
raw_corpus = pd.read_excel(os.path.join(root_data_dir, expert_file))
annotated_score = []
metrics = ['Validness', 'Novelty', 'Helpfulness']
if_annotated = 1
for cur_data_id in range(len(raw_corpus)):
if if_annotated == 0:
break
for cur_id_ctnt, cur_ctnt in enumerate(metrics):
cur_score = raw_corpus[cur_ctnt][cur_data_id]
# print("cur_score: ", np.isnan(cur_score))
if cur_id_ctnt == 0:
# print("cur_score: ", cur_score)
if np.isnan(cur_score) == False:
if cur_data_id % 8 == 0:
annotated_score.append([])
annotated_score[-1].append([cur_score])
assert cur_score >= 1 and cur_score <= 5
else:
if_annotated = 0
break
else:
assert np.isnan(cur_score) == False
assert cur_score >= 1 and cur_score <= 5
annotated_score[-1][-1].append(cur_score)
# print("annotated_score: ", annotated_score)
annotated_score = np.array(annotated_score)
print("annotated_score.shape: ", annotated_score.shape)
# annotated_score: [n, 8, 3]
return annotated_score
# annotated_score: [[n(num_data), 8, 3], ...]
# rand_order: [50, 4]
def final_result(annotated_score, rand_order):
def final_result_single_file(annotated_score, rand_order):
# baseline, tomato_base, tomato_future, tomato_fp
all_scores = [[], [], [], []]
for cur_bkg_id in range(annotated_score.shape[0]):
# [2, 1, 0, 3]
cur_rand_order = rand_order[cur_bkg_id]
cur_cnted_score_id = 0
for cur_rand_order_id in cur_rand_order:
# three successive scores
if cur_rand_order_id == 1 or cur_rand_order_id == 3:
# cur_scores: [3, 3]
cur_scores = annotated_score[cur_bkg_id][cur_cnted_score_id: cur_cnted_score_id+3]
cur_cnted_score_id += 3
# one score
else:
# cur_scores: [1, 3]
cur_scores = annotated_score[cur_bkg_id][cur_cnted_score_id: cur_cnted_score_id+1]
cur_cnted_score_id += 1
all_scores[cur_rand_order_id].append(cur_scores)
assert cur_cnted_score_id <= 8
return all_scores
# Aggregate scores from multiple files
all_scores_across_files = [[], [], [], []]
for cur_file_id in range(len(annotated_score)):
cur_all_scores = final_result_single_file(annotated_score[cur_file_id], rand_order)
for cur_model_id in range(len(all_scores_across_files)):
all_scores_across_files[cur_model_id] += cur_all_scores[cur_model_id]
baseline_score = np.array(all_scores_across_files[0])
tomato_base_score = np.array(all_scores_across_files[1])
tomato_future_score = np.array(all_scores_across_files[2])
tomato_fp = np.array(all_scores_across_files[3])
print("baseline_score.shape: ", baseline_score.shape)
print("tomato_base_score.shape: ", tomato_base_score.shape)
print("tomato_future_score.shape: ", tomato_future_score.shape)
print("tomato_fp.shape: ", tomato_fp.shape)
ave_baseline_score = np.mean(baseline_score, axis=0).squeeze()
ave_tomato_base_score = np.mean(tomato_base_score, axis=0).squeeze()
ave_tomato_future_score = np.mean(tomato_future_score, axis=0).squeeze()
ave_tomato_fp = np.mean(tomato_fp, axis=0).squeeze()
print("\nave_baseline_score: \n", ave_baseline_score)
print("\nave_tomato_base_score: \n", ave_tomato_base_score)
print("\nave_tomato_future_score: \n", ave_tomato_future_score)
print("\nave_tomato_fp: \n", ave_tomato_fp)
def main():
root_data_dir = "./Checkpoints/expert_evaluation/"
expert_file_0 = "picked_hypotheses_for_expert_evaluation_rand_order_for_each_group_Junxian_labeled.xlsx"
expert_file_1 = "expert_1_2.xlsx"
annotated_score_0 = load_annotated_data(root_data_dir, expert_file_0)
annotated_score_1 = load_annotated_data(root_data_dir, expert_file_1)
# num_group_annotated = annotated_score.shape[0]
rand_id_dir = "./Checkpoints/expert_evaluation/rand_order_for_each_group.pt"
rand_order = torch.load(rand_id_dir)
final_result([annotated_score_0, annotated_score_1], rand_order)
if __name__ == "__main__":
main()
print("finished")