forked from Cyn7hia/Neurosymbolic_AI-PSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_by_category.py
124 lines (109 loc) · 5.89 KB
/
eval_by_category.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from utils import load_jsonl, parse_score, load
from data_prep import get_persona, get_dataset
from sklearn.metrics import accuracy_score, mean_squared_error, f1_score
def load_results():
exp_dir = './experiments/gpt4/'
subpath = 'sentiment_analysis_all'
labelpath = os.path.join(exp_dir, subpath, "labels.json")
filepath = os.path.join(exp_dir, subpath, "proposed.json")
all_descriptions = load_jsonl(filepath)
all_labels = load_jsonl(labelpath)
# all_l = load(labelpath, 'target')['target']
all_scores = []
for description in all_descriptions:
label_text = description['label']
score = parse_score(label_text,
character_1=description['content']['character_1'],
character_2=description['content']['character_2'])
all_scores.append(score)
return all_scores, all_labels
def collect_res_by_category(all_scores, all_labels, category_map, aspect='entity'):
preds = {}
targets = {}
preds_three = {}
targets_three = {}
category_num = {}
# category_senti_num = {}
num_pos = 0
num_neg = 0
num_neutral = 0
num_pred = 0
for pred, target in zip(all_scores, all_labels):
for name, label in target.items():
if name != "Harry" and name != "idx":
category_other = category_map[name][aspect]
for name, label in target.items():
if name != "idx":
# if category_other not in category_senti_num:
# category_senti_num[category_other] = {}
# category_senti_num[category_other]["other"] = 0
# category_senti_num[category_other]["Harry"] = 0
if label > 0:
num_pos += 1
label_three = 2 #1
elif label == 0:
num_neutral += 1
label_three = 1 # 0
else:
num_neg += 1
label_three = 0 #2
if category_other not in category_num:
category_num[category_other] = 0
if name != "Harry":
category_num[category_other] += 1
if name in pred:
num_pred += 1
pred_score = int(pred[name])
if pred_score > 0:
pred_score_three = 2 #1
elif pred_score == 0:
pred_score_three = 1 # 0
else:
pred_score_three = 0 #2
# category = category_map[name][aspect]
if category_other not in preds.keys():
preds[category_other] = {'other': [], 'Harry': []}
if category_other not in targets.keys():
targets[category_other] = {'other': [], 'Harry': []}
if category_other not in preds_three.keys():
preds_three[category_other] = {'other': [], 'Harry': []}
if category_other not in targets_three.keys():
targets_three[category_other] = {'other': [], 'Harry': []}
if name != "Harry":
preds[category_other]['other'].append(pred_score)
targets[category_other]['other'].append(label)
preds_three[category_other]['other'].append(pred_score_three)
targets_three[category_other]['other'].append(label_three)
else:
preds[category_other]['Harry'].append(pred_score)
targets[category_other]['Harry'].append(label)
preds_three[category_other]['Harry'].append(pred_score_three)
targets_three[category_other]['Harry'].append(label_three)
return preds, targets, preds_three, targets_three, num_pos, num_neutral, num_neg, num_pred, category_num
if __name__ == '__main__':
_, character = get_dataset()
character = get_persona(character, aspect="all")
aspects = ['entity', 'culture']
all_scores, all_labels = load_results()
for aspect in aspects:
(preds, targets, preds_three, targets_three,
num_pos, num_neutral, num_neg, num_pred, category_num) = collect_res_by_category(all_scores, all_labels, character, aspect)
success_rate = 1.0 * num_pred / (2 * len(all_labels))
print("Aspect:", aspect, "********")
for category in targets.keys():
print('Category: ', category, "ccccccccc")
print('Answer rate: ', 1.0*len(targets[category]['other'])/category_num[category])
for group in ['other', 'Harry']:
print('Group: ', group, "gggggggg")
macro_f1 = f1_score(targets[category][group], preds[category][group], average='macro')
f1 = f1_score(targets[category][group], preds[category][group], average=None)
acc = accuracy_score(targets[category][group], preds[category][group])
mse = mean_squared_error(targets[category][group], preds[category][group])
macro_f1_three = f1_score(targets_three[category][group], preds_three[category][group], average='macro')
f1_three = f1_score(targets_three[category][group], preds_three[category][group], average=None)
acc_three = accuracy_score(targets_three[category][group], preds_three[category][group])
mse_three = mean_squared_error(targets_three[category][group], preds_three[category][group])
print("macro_f1: {}\n".format(macro_f1), "f1: {}\n".format(f1), "acc: {}\n".format(acc), "mse: {}\n".format(mse), "macro_f1_three: {}\n".format(macro_f1_three),
"f1_three: {}\n".format(f1_three), "acc_three: {}\n".format(acc_three), "mse_three: {}\n".format(mse_three))
print(success_rate, num_pos, num_neg, num_neutral)