forked from Cyn7hia/Neurosymbolic_AI-PSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_query_sa.py
145 lines (121 loc) · 5.03 KB
/
run_query_sa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import json
from tqdm import tqdm
from query_sa import propose
from experiment_recorder import ExperimentRecorder
from llm_base.llm_structure import model_init
from utils import load_jsonl
from data_prep import get_dataset, get_persona
from dataset import HarryDataset, HarryDataset_Zero
def run_propose(
problem,
exp_dir: str,
proposer_model: str = "gpt-3.5-turbo",
proposer_template: str = "templates/gpt_entity.txt",
):
"""
The main function for running the iterative PAS.
Parameters
----------
problem : Dataloader
The Dataloader.
exp_dir: str
The directory to save the results.
proposer_model: str
The model to use for the proposer. The number of descriptions to propose in each proposing round.
proposer_template: str
"""
# recorder = ExperimentRecorder()
os.makedirs(exp_dir, exist_ok=True)
# recorder.set_output_dir(exp_dir)
labelpath = os.path.join(exp_dir, "labels.json")
filepath = os.path.join(exp_dir, "proposed.json")
if os.path.exists(filepath) and os.path.exists(labelpath):
all_descriptions = load_jsonl(filepath)
all_labels = load_jsonl(labelpath)
else:
# proposer
if proposer_model == "HuggingFaceH4/zephyr-7b-beta" or proposer_model == "meta-llama/Llama-2-7b-chat-hf":
tokenizer, proposer_model = model_init(proposer_model)
else:
tokenizer = None
recorder = ExperimentRecorder()
# os.makedirs(exp_dir, exist_ok=True)
recorder.set_output_dir(exp_dir)
descriptions = []
labels = []
all_descriptions = []
all_labels = []
count = 0
for single_prob, score in tqdm(problem, desc="Proposing..."):
text = single_prob
new_description = propose(
problem=text,
proposer_model=proposer_model,
tokenizer=tokenizer,
proposer_template=proposer_template,
)
recorder.record_propose(new_description, "proposer")
res = json.dumps(dict(content=text, label=new_description[0]))
descriptions.append(res + "\n")
all_descriptions.append({"content":text, "label":new_description[0]})
res_label = json.dumps(score)
labels.append(res_label + "\n")
all_labels.append(score)
if count % 200 == 0:
with open(filepath, "a") as f:
f.write("".join(descriptions))
descriptions = []
with open(labelpath, "a") as f:
f.write("".join(labels))
labels = []
count += 1
if count >= len(problem):
break
with open(filepath, "a") as f:
f.write("".join(descriptions))
with open(labelpath, "a") as f:
f.write("".join(labels))
# with open(os.path.join(exp_dir, "proposed.josn"), 'w') as f:
# json.dump(all_descriptions, f)
return all_descriptions, all_labels
def gen_args():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--data_path",
type=str,
default="./data"
)
parser.add_argument("--data_name", type=str, default="character_intersection.json")
parser.add_argument("--aspect", type=str, default="all")
parser.add_argument("--exp_dir", type=str, default="./experiments/") # sentiment_analysis_culture, sentiment_analysis_religion, sentiment_analysis_subjectivity,sentiment_analysis_ideology, sentiment_analysis_vocation, sentiment_analysis_personality, sentiment_analysis_entity
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--chunk_text_to_words", type=int, default=None)
parser.add_argument("--turn_off_approval_before_running", action="store_true")
parser.add_argument("--proposer_model", type=str, default="gpt-4-turbo-2024-04-09") #gpt-4-turbo-2024-04-09 gpt-3.5-turbo-0125
parser.add_argument(
"--proposer_template",
type=str,
default="templates/gpt_sa_0.txt",
) # gpt_sa.txt
args = parser.parse_args()
return args
if __name__ == "__main__":
args = gen_args()
model = "gpt{}".format(args.proposer_model.split('-')[1])
if args.aspect != "0":
args.proposer_template = "templates/gpt_sa.txt"
else:
args.proposer_template = "templates/gpt_sa_0.txt"
args.exp_dir = os.path.join(args.exp_dir, model, "sentiment_analysis_{}".format(args.aspect))
data_combined, character = get_dataset()
character = get_persona(character, aspect=args.aspect)
if args.aspect != "0":
harry_data = HarryDataset(data_combined, character)
else:
harry_data = HarryDataset_Zero(data_combined, character)
descriptions, labels = run_propose(problem=harry_data,
exp_dir=args.exp_dir,
proposer_model=args.proposer_model,
proposer_template=args.proposer_template)
print("done!")