-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRhizo_assembly_seq_processing.Rmd
472 lines (350 loc) · 11.1 KB
/
Rhizo_assembly_seq_processing.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
---
title: "Rhizo Assembly Seq Processing"
author: "Abby Sulesky-Grieb"
date: "2023-08-22"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, eval = FALSE)
```
## Copy demultiplexed sequences into working space from raw_sequence directory
go to the raw sequence folder, *.fastq will grab all files ending in .fastq, then list the destination directory
do this for all 3 miseq runs separately, will merge runs after dada2 step
nano copy_seqs(1-3).sb
```{r}
#!/bin/bash -login
#SBATCH --time=03:59:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --mem=30G
#SBATCH -A shade-cole-bonito
#SBATCH --job-name copy_seqs1
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
######## Job code
cp *.fastq.gz /mnt/research/ShadeLab/WorkingSpace/Sulesky/Rhizo_assembly/run1
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_ID
#!/bin/bash -login
#SBATCH --time=03:59:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --mem=30G
#SBATCH -A shade-cole-bonito
#SBATCH --job-name copy_seqs2
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
######## Job code
cp *.fastq.gz /mnt/research/ShadeLab/WorkingSpace/Sulesky/Rhizo_assembly/run2
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_ID
#!/bin/bash -login
#SBATCH --time=03:59:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --mem=30G
#SBATCH -A shade-cole-bonito
#SBATCH --job-name copy_seqs3
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
######## Job code
cp *.fastq.gz /mnt/research/ShadeLab/WorkingSpace/Sulesky/Rhizo_assembly/run3
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_ID
```
submit job:
sbatch copy_seqs(1-3).sb
## Run figaro for each seq run
make figaro output folder in workingspace directory, add sub-directory called figaro_input
unzip fastq files in the figaro_input directory
#!/bin/bash -login
#SBATCH --time=03:59:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --mem=30G
#SBATCH -A shade-cole-bonito
#SBATCH --job-name unzip
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
######## Job code
gunzip *fastq.gz
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_ID
than go back and delete job file and slurm output, need to only have unzipped fastqs in the input folder
go to home directory where figaro is installed to run figaro:
cd /mnt/home/suleskya/figaro-master/figaro
Run figaro as a job:
nano figaro_RA_(1-3).sb
```{r}
#!/bin/bash -login
########## SBATCH Lines for Resource Request ##########
#SBATCH --time=3:59:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=64G
#SBATCH --job-name figaro1
#SBATCH -A shade-cole-bonito
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
########## Command Lines for Job Running ##########
conda activate figaro
python figaro.py -i /mnt/research/ShadeLab/WorkingSpace/Sulesky/Rhizo_assembly/run1/figaro/figaro_input -o /mnt/research/ShadeLab/WorkingSpace/Sulesky/Rhizo_assembly/run1/figaro -f 1 -r 1 -a 253 -F illumina
conda deactivate
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_I
```
sbatch figaro_argonne_june2023.sb
Once job is finished, check the figaro output:
cd back to figaro folder in workingspace directory
> less trimParameters.json
Run 1
{
"trimPosition": [
99,
176
],
"maxExpectedError": [
1,
2
],
"readRetentionPercent": 95.73,
"score": 94.73149502123808
},
> control Z to exit "less"
Run 2
{
"trimPosition": [
124,
151
],
"maxExpectedError": [
1,
2
],
"readRetentionPercent": 95.26,
"score": 94.26206520604508
}
Run 3
{
"trimPosition": [
125,
150
],
"maxExpectedError": [
1,
2
],
"readRetentionPercent": 95.13,
"score": 94.12665388967142
}
Run1: truncate the sequences at forward 99 and reverse 176, which will merge 95.73 percent of the reads
Run2: truncate the sequences at forward 124 and reverse 151, which will merge 95.26 percent of the reads
Run3: truncate the sequences at forward 125 and reverse 150, which will merge 95.13 percent of the reads
## Import data into Qiime2 format
use zipped fastq files in input directories
go to run(1-3) directory to run job
```{r}
#!/bin/bash -login
########## SBATCH Lines for Resource Request ##########
#SBATCH --time=3:59:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=64G
#SBATCH --job-name import_1
#SBATCH -A shade-cole-bonito
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
########## Command Lines for Job Running ##########
conda activate qiime2-2022.8
qiime tools import \
--type 'SampleData[PairedEndSequencesWithQuality]' \
--input-path run1_input \
--input-format CasavaOneEightSingleLanePerSampleDirFmt \
--output-path demux-paired-end.qza
conda deactivate
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_I
```
saved data as demux-paired-end.qza, can use this file in dada2
## Denoise and merge
do this job for each run
Run1
```{r}
#!/bin/bash -login
########## SBATCH Lines for Resource Request ##########
#SBATCH --time=12:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=100G
#SBATCH --job-name dada2_1
#SBATCH -A shade-cole-bonito
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
########## Command Lines for Job Running ##########
conda activate qiime2-2022.8
qiime dada2 denoise-paired \
--i-demultiplexed-seqs demux-paired-end.qza \
--p-trunc-len-f 99 \
--p-trunc-len-r 176 \
--o-table table.qza \
--o-representative-sequences rep-seqs1.qza \
--o-denoising-stats denoising-stats.qza
qiime metadata tabulate \
--m-input-file denoising-stats.qza \
--o-visualization denoising-stats.qzv
qiime feature-table tabulate-seqs \
--i-data rep-seqs1.qza \
--o-visualization rep-seqs1.qzv
conda deactivate
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_I
```
Run2
```{r}
#!/bin/bash -login
########## SBATCH Lines for Resource Request ##########
#SBATCH --time=12:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=100G
#SBATCH --job-name dada2_2
#SBATCH -A shade-cole-bonito
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
########## Command Lines for Job Running ##########
conda activate qiime2-2022.8
qiime dada2 denoise-paired \
--i-demultiplexed-seqs demux-paired-end.qza \
--p-trunc-len-f 124 \
--p-trunc-len-r 151 \
--o-table table.qza \
--o-representative-sequences rep-seqs2.qza \
--o-denoising-stats denoising-stats.qza
qiime metadata tabulate \
--m-input-file denoising-stats.qza \
--o-visualization denoising-stats.qzv
qiime feature-table tabulate-seqs \
--i-data rep-seqs2.qza \
--o-visualization rep-seqs2.qzv
conda deactivate
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_I
```
Run3
```{r}
#!/bin/bash -login
########## SBATCH Lines for Resource Request ##########
#SBATCH --time=12:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=100G
#SBATCH --job-name dada2_3
#SBATCH -A shade-cole-bonito
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
########## Command Lines for Job Running ##########
conda activate qiime2-2022.8
qiime dada2 denoise-paired \
--i-demultiplexed-seqs demux-paired-end.qza \
--p-trunc-len-f 125 \
--p-trunc-len-r 150 \
--o-table table.qza \
--o-representative-sequences rep-seqs3.qza \
--o-denoising-stats denoising-stats.qza
qiime metadata tabulate \
--m-input-file denoising-stats.qza \
--o-visualization denoising-stats.qzv
qiime feature-table tabulate-seqs \
--i-data rep-seqs3.qza \
--o-visualization rep-seqs3.qzv
conda deactivate
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_I
```
# Merge the rep-seqs and ASV tables
from Rhizo_assembly directory:
```{r}
#!/bin/bash -login
########## SBATCH Lines for Resource Request ##########
#SBATCH --time=3:59:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=64G
#SBATCH --job-name merge
#SBATCH -A shade-cole-bonito
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
########## Command Lines for Job Running ##########
conda activate qiime2-2022.8
qiime feature-table merge \
--i-tables run1/table.qza run2/table.qza run3/table.qza \
--p-overlap-method sum \
--o-merged-table merged-table.qza
qiime feature-table merge-seqs \
--i-data run1/rep-seqs1.qza \
--i-data run2/rep-seqs2.qza \
--i-data run3/rep-seqs3.qza \
--o-merged-data merged_rep-seqs.qza
conda deactivate
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_I
```
## Taxonomy assignment with silva
Download reference seqs from qiime2.org:
wget https://data.qiime2.org/2022.8/common/silva-138-99-515-806-nb-classifier.qza
job:
nano classify-silva-taxonomy.sb
```{bash}
#!/bin/bash -login
########## SBATCH Lines for Resource Request ##########
#SBATCH --time=16:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=32
#SBATCH --mem=64G
#SBATCH --job-name taxonomy
#SBATCH -A shade-cole-bonito
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END
########## Command Lines for Job Running ##########
conda activate qiime2-2022.8
qiime feature-classifier classify-sklearn \
--i-classifier silva-138-99-515-806-nb-classifier.qza \
--i-reads merged_rep-seqs.qza \
--o-classification taxonomy.qza
qiime metadata tabulate \
--m-input-file taxonomy.qza \
--o-visualization taxonomy.qzv
qiime tools export \
--input-path taxonomy.qza \
--output-path phyloseq
qiime tools export \
--input-path merged-table.qza \
--output-path phyloseq
biom convert \
-i phyloseq/feature-table.biom \
-o phyloseq/otu_table.txt \
--to-tsv
conda deactivate
echo -e "\n `sacct -u suleskya -j $SLURM_JOB_ID --format=JobID,JobName,Start,End,Elapsed,NCPUS,ReqMem` \n"
scontrol show job $SLURM_JOB_I
```
### Export to phyloseq
```{r}
qiime tools export \
--input-path taxonomy.qza \
--output-path phyloseq
qiime tools export \
--input-path merged_table.qza \
--output-path phyloseq
biom convert \
-i phyloseq/feature-table.biom \
-o phyloseq/otu_table.txt \
--to-tsv
```