-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfmnist.py
46 lines (37 loc) · 1.25 KB
/
fmnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch.nn as nn
from torchvision import datasets, transforms
from partitioner import partition_dataset
class FashionMNISTNet(nn.Module):
def __init__(self, input_shape=28*28, num_classes=10):
super(self.__class__, self).__init__()
self.model = nn.Sequential(
nn.Flatten(start_dim=1),
nn.Linear(input_shape, 512, bias=False),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Linear(512, 256, bias=False),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(256, num_classes),
nn.LogSoftmax(dim=1),
)
def forward(self, input):
output = self.model(input)
return output
def load(batch_size=10000):
train_ds = datasets.FashionMNIST(
'./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
])
)
test_ds = datasets.FashionMNIST(
'./data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
])
)
train_loader, _ = partition_dataset(train_ds, batch_size)
test_loader, _ = partition_dataset(test_ds, batch_size)
return train_loader, test_loader