-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathImageDataset.py
45 lines (39 loc) · 1.49 KB
/
ImageDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# -*- coding: UTF-8 -*-
'''
负责训练及测试数据的读取
'''
from torchvision import transforms, datasets
import os
import torch
from PIL import Image
def readImg(path):
'''
用于替代ImageFolder的默认读取图片函数,以读取单通道图片
'''
return Image.open(path)
def ImageDataset(args):
# 数据增强及归一化
# 图片都是100x100的,训练时随机裁取90x90的部分,测试时裁取中间的90x90
data_transforms = {
'train': transforms.Compose([
transforms.RandomCrop(90),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
]),
'test': transforms.Compose([
transforms.CenterCrop(90),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
]),
}
data_dir = args.data_dir
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x], loader=readImg)
for x in ['train', 'test']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=args.batch_size,
shuffle=(x == 'train'), num_workers=args.num_workers)
for x in ['train', 'test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'test']}
class_names = image_datasets['train'].classes
return dataloaders, dataset_sizes, class_names