-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
149 lines (125 loc) · 5.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import logging
import os
import sys
import shutil
import numpy as np
import argparse
import yaml
import copy
import traceback
from runner import Runner
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()['__doc__'])
parser.add_argument('--config', type=str, required=True, help='Path to the config file')
parser.add_argument('--seed', type=int, default=0, help='Random seed')
parser.add_argument('--exp', type=str, default='exp', help='Path for saving running related data.')
parser.add_argument('--doc', type=str, required=True, help='A string for documentation purpose. '
'Will be the name of the log folder.')
parser.add_argument('--comment', type=str, default='', help='A string for experiment comment')
parser.add_argument('--verbose', type=str, default='info', help='Verbose level: info | debug | warning | critical')
parser.add_argument('--train', action='store_true', help='Whether to train the model')
parser.add_argument('--test', action='store_true', help='Whether to test the model')
parser.add_argument('--sample', action='store_true', help='Whether to produce samples from the model')
parser.add_argument('--resume_training', action='store_true', help='Whether to resume training')
parser.add_argument('-i', '--image_folder', type=str, default='images', help="The folder name of samples")
args = parser.parse_args()
args.log_path = os.path.join(args.exp, 'logs', args.doc)
# parse config file
with open(os.path.join('configs', args.config), 'r') as f:
config = yaml.load(f,yaml.CLoader)
new_config = dict2namespace(config)
if not args.test:
if not args.resume_training and not args.sample:
if os.path.exists(args.log_path):
overwrite = False
response = input("Folder already exists. Overwrite? (Y/N)")
if response.upper() == 'Y':
overwrite = True
if overwrite:
shutil.rmtree(args.log_path)
os.makedirs(args.log_path)
else:
os.makedirs(args.log_path)
with open(os.path.join(args.log_path, 'config.yml'), 'w') as f:
yaml.dump(new_config, f, default_flow_style=False)
# setup logger
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError('level {} not supported'.format(args.verbose))
handler1 = logging.StreamHandler()
handler2 = logging.FileHandler(os.path.join(args.log_path, 'stdout.txt'))
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
handler1.setFormatter(formatter)
handler2.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.addHandler(handler2)
logger.setLevel(level)
else:
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError('level {} not supported'.format(args.verbose))
handler1 = logging.StreamHandler()
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
handler1.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.setLevel(level)
if args.sample:
os.makedirs(os.path.join(args.exp, 'image_samples'), exist_ok=True)
args.image_folder = os.path.join(args.exp, 'image_samples', args.image_folder)
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
else:
overwrite = False
response = input("Image folder already exists. Overwrite? (Y/N)")
if response.upper() == 'Y':
overwrite = True
if overwrite:
shutil.rmtree(args.image_folder)
os.makedirs(args.image_folder)
else:
print("Output image folder exists. Program halted.")
sys.exit(0)
# add device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
logging.info("Using device: {}".format(device))
new_config.device = device
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
return args, new_config
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def main():
args, config = parse_args_and_config()
logging.info("Writing log file to {}".format(args.log_path))
logging.info("Exp comment = {}".format(args.comment))
logging.info("Config =")
print(">" * 80)
config_dict = copy.copy(vars(config))
print(yaml.dump(config_dict, default_flow_style=False))
print("<" * 80)
try:
runner = Runner(args,config)
if args.test:
runner.test()
elif args.train:
runner.train()
else:
print("Add --test or --train in your command line or run.sh !")
except:
logging.error(traceback.format_exc())
return 0
if __name__ == '__main__':
sys.exit(main())