-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.Rmd
50 lines (41 loc) · 1.19 KB
/
models.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
title: "continous distributions"
author: "WILLIAM"
output: word-document
---
# Gamma
$$f(x) = \frac {x^{\alpha-1} \lambda^{\alpha} e^{-\lambda x}}{\Gamma\alpha}$$
## mean
$$E(x) = \frac{\alpha}{\lambda}$$
## Variance
$$Var(x) = \frac{\alpha}{\lambda^2}$$
# Beta
$$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha - 1}(1-x)^{\beta -1}$$
## mean
$$E(X)=\frac{\alpha}{\alpha+\beta}$$
## Variance
$$Var(x)=\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$
# Uniform
$$f(x)=\frac{1}{b-a}$$
## mean
$$E(x)=\frac{a+b}{2}$$
## Variance
$$Var(x)=\frac{(b-a)^2}{12}$$
# Exponential
$$f(x)=\lambda e^{-\lambda x}$$
## mean
$$E(x)= \frac{1}{\lambda}$$
## Variance
$$Var(x)= \frac{1}{\lambda^2}$$
# Weibull
$$f(x)=\left(\frac{\alpha}{\theta}\right)\left(\frac{x}{\theta}\right)^{\alpha-1} e^{-({\frac{x}{\theta})^\alpha}}$$
## mean
$$E(x)=~~\Theta \Gamma(1+\frac{1}{\alpha})$$
## Variance
$$Var(x)=~~\Theta^2 \left(\Gamma(1+\frac{2}{\alpha})-\Gamma(1+\frac{1}{\alpha})^2\right)$$
# Normal
$$f(x)= \frac{1}{\sqrt{2 \pi \sigma^2}}e^{-\frac{1}{2}} \left(\frac{x - \mu}{\sigma}\right)^2 $$
## mean
$$E(x)= \mu$$
## Variance
$$Var(x)=\sigma^2$$