-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp-td-standalone.c
87 lines (65 loc) · 2.44 KB
/
exp-td-standalone.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#include "crlibm.h"
#include "crlibm_private.h"
#include "triple-double.h"
#include "exp-td.h"
#define AVOID_FMA 0
extern void exp_td_accurate(double *polyTblh, double *polyTblm, double *polyTbll,
double rh, double rm, double rl,
double tbl1h, double tbl1m, double tbl1l,
double tbl2h, double tbl2m, double tbl2l);
/* Function exp13
Computes exp(x) with an accuracy of 113 bits as
2^exponent * (exph + expm + expl) \approx exp(x)
Unless the subnormal case for x, no special cases are
handled.
The triple-double exph + expm + expl is non-overlapping.
The domain for exph + expm + expl is 1/2..2
The integer exponent is in the range -1024..1024. The
value 2^(exponent) may therefore be non-representable
whereas 2^exponent * (exph + expm + expl) is.
*/
void exp13(int *exponent, double *exph, double *expm, double *expl, double x) {
double rh, rm, rl, tbl1h, tbl1m, tbl1l;
double tbl2h, tbl2m, tbl2l;
double xMultLog2InvMult2L, shiftedXMult, kd;
double msLog2Div2LMultKh, msLog2Div2LMultKm, msLog2Div2LMultKl;
double t1, t2;
db_number shiftedXMultdb, xdb;
int k, M, index1, index2, xIntHi;
/* Argument reduction and filtering for special cases */
/* Compute k as a double and as an int */
xdb.d = x;
xMultLog2InvMult2L = x * log2InvMult2L;
shiftedXMult = xMultLog2InvMult2L + shiftConst;
kd = shiftedXMult - shiftConst;
shiftedXMultdb.d = shiftedXMult;
/* Special cases tests */
xIntHi = xdb.i[HI];
/* Test if argument is a denormal or zero */
if ((xIntHi & 0x7ff00000) == 0) {
/* We are in the RN case, return 1.0 in all cases */
*exph = 1.0;
*expm = 0.0;
*expl = 0.0;
return;
}
k = shiftedXMultdb.i[LO];
M = k >> L;
index1 = k & INDEXMASK1;
index2 = (k & INDEXMASK2) >> LHALF;
/* Table reads */
tbl1h = twoPowerIndex1[index1].hi;
tbl1m = twoPowerIndex1[index1].mi;
tbl2h = twoPowerIndex2[index2].hi;
tbl2m = twoPowerIndex2[index2].mi;
tbl1l = twoPowerIndex1[index1].lo;
tbl2l = twoPowerIndex2[index2].lo;
/* Argument reduction */
Mul133(&msLog2Div2LMultKh,&msLog2Div2LMultKm,&msLog2Div2LMultKl,kd,msLog2Div2Lh,msLog2Div2Lm,msLog2Div2Ll);
t1 = x + msLog2Div2LMultKh;
Add12Cond(rh,t2,t1,msLog2Div2LMultKm);
Add12Cond(rm,rl,t2,msLog2Div2LMultKl);
/* Polynomial approximation and reconstruction: factorized code */
exp_td_accurate(exph, expm, expl, rh, rm, rl, tbl1h, tbl1m, tbl1l, tbl2h, tbl2m, tbl2l);
*exponent = M;
}