forked from jhong93/spot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_e2e.py
executable file
·103 lines (80 loc) · 3.31 KB
/
test_e2e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python3
""" Inference for E2E-Spot """
import os
import argparse
import re
import torch
from dataset.frame import ActionSpotVideoDataset
from util.io import load_json
from util.dataset import load_classes
from train_e2e import E2EModel, evaluate
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('model_dir', help='Path to the model dir')
parser.add_argument('frame_dir', help='Path to the frame dir')
parser.add_argument('-s', '--split',
choices=['train', 'val', 'test', 'challenge'],
required=True)
parser.add_argument('--no_overlap', action='store_true')
save = parser.add_mutually_exclusive_group()
save.add_argument('--save', action='store_true',
help='Save predictions with default names')
save.add_argument('--save_as', help='Save predictions with a custom prefix')
parser.add_argument('-d', '--dataset',
help='Dataset name if not inferrable from the config')
return parser.parse_args()
def get_best_epoch(model_dir, key='val_mAP'):
data = load_json(os.path.join(model_dir, 'loss.json'))
best = max(data, key=lambda x: x[key])
return best['epoch']
def get_last_epoch(model_dir):
regex = re.compile(r'checkpoint_(\d+)\.pt')
last_epoch = -1
for file_name in os.listdir(model_dir):
m = regex.match(file_name)
if m:
epoch = int(m.group(1))
last_epoch = max(last_epoch, epoch)
assert last_epoch >= 0
return last_epoch
def main(model_dir, frame_dir, split, no_overlap, save, save_as, dataset):
config_path = os.path.join(model_dir, 'config.json')
with open(config_path) as fp:
print(fp.read())
config = load_json(config_path)
if os.path.isfile(os.path.join(model_dir, 'loss.json')):
best_epoch = get_best_epoch(model_dir)
print('Best epoch:', best_epoch)
else:
best_epoch = get_last_epoch(model_dir)
if dataset is None:
dataset = config['dataset']
else:
if dataset != config['dataset']:
print('Dataset mismatch: {} != {}'.format(
dataset, config['dataset']))
classes = load_classes(os.path.join('data', dataset, 'class.txt'))
model = E2EModel(
len(classes) + 1, config['feature_arch'], config['temporal_arch'],
clip_len=config['clip_len'], modality=config['modality'],
multi_gpu=config['gpu_parallel'])
model.load(torch.load(os.path.join(
model_dir, 'checkpoint_{:03d}.pt'.format(best_epoch))))
split_path = os.path.join('data', dataset, '{}.json'.format(split))
split_data = ActionSpotVideoDataset(
classes, split_path, frame_dir, config['modality'], config['clip_len'],
overlap_len=0 if no_overlap else config['clip_len'] // 2,
crop_dim=config['crop_dim'])
pred_file = None
if save_as is not None:
pred_file = save_as
elif save is not None:
pred_file = os.path.join(
model_dir, 'pred-{}.{}'.format(split, best_epoch))
assert not os.path.exists(pred_file), pred_file
if pred_file is not None:
print('Saving predictions:', pred_file)
evaluate(model, split_data, split.upper(), classes, pred_file,
calc_stats=False)
if __name__ == '__main__':
main(**vars(get_args()))