forked from DL4Jets/DeepJetCore
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathWeighter.py
275 lines (213 loc) · 9.36 KB
/
Weighter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
'''
Created on 26 Feb 2017
@author: jkiesele
'''
from __future__ import print_function
import matplotlib
#if no X11 use below
matplotlib.use('Agg')
class Weighter(object):
'''
contains the histograms/input to calculate jet-wise weights
'''
def __init__(self):
self.Axixandlabel=[]
self.axisX=[]
self.axisY=[]
self.hists =[]
self.removeProbabilties=[]
self.binweights=[]
self.distributions=[]
self.xedges=[]
self.yedges=[]
self.classes=[]
self.refclassidx=0
self.undefTruth=[]
def __eq__(self, other):
'A == B'
def comparator(this, that):
'compares lists of np arrays'
return all((i == j).all() for i,j in zip(this, that))
return self.Axixandlabel == other.Axixandlabel and \
all(self.axisX == other.axisX) and \
all(self.axisY == other.axisY) and \
comparator(self.hists, other.hists) and \
comparator(self.removeProbabilties, other.removeProbabilties) and \
self.classes == other.classes and \
self.refclassidx == other.refclassidx and \
self.undefTruth == other.undefTruth and \
comparator(self.binweights, other.binweights) and \
comparator(self.distributions, other.distributions) and \
(self.xedges == other.xedges).all() and \
(self.yedges == other.yedges).all()
def __ne__(self, other):
'A != B'
return not (self == other)
def setBinningAndClasses(self,bins,nameX,nameY,classes):
self.axisX= bins[0]
self.axisY= bins[1]
self.nameX=nameX
self.nameY=nameY
self.classes=classes
if len(self.classes)<1:
self.classes=['']
def addDistributions(self,Tuple):
import numpy
selidxs=[]
ytuple=Tuple[self.nameY]
xtuple=Tuple[self.nameX]
useonlyoneclass=len(self.classes)==1 and len(self.classes[0])==0
if not useonlyoneclass:
labeltuple=Tuple[self.classes]
for c in self.classes:
selidxs.append(labeltuple[c]>0)
else:
selidxs=[numpy.zeros(len(xtuple),dtype='int')<1]
for i in range(len(self.classes)):
tmphist,xe,ye=numpy.histogram2d(xtuple[selidxs[i]],ytuple[selidxs[i]],[self.axisX,self.axisY],normed=True)
self.xedges=xe
self.yedges=ye
if len(self.distributions)==len(self.classes):
self.distributions[i]=self.distributions[i]+tmphist
else:
self.distributions.append(tmphist)
def printHistos(self,outdir):
import numpy
def plotHist(hist,outname):
import matplotlib.pyplot as plt
H=hist.T
fig = plt.figure()
ax = fig.add_subplot(111)
X, Y = numpy.meshgrid(self.xedges, self.yedges)
ax.pcolormesh(X, Y, H)
if self.axisX[0]>0:
ax.set_xscale("log", nonposx='clip')
else:
ax.set_xlim([self.axisX[1],self.axisX[-1]])
ax.set_xscale("log", nonposx='mask')
#plt.colorbar()
fig.savefig(outname)
plt.close()
for i in range(len(self.classes)):
if len(self.distributions):
plotHist(self.distributions[i],outdir+"/dist_"+self.classes[i]+".pdf")
plotHist(self.removeProbabilties[i] ,outdir+"/remprob_"+self.classes[i]+".pdf")
plotHist(self.binweights[i],outdir+"/weights_"+self.classes[i]+".pdf")
reshaped=self.distributions[i]*self.binweights[i]
plotHist(reshaped,outdir+"/reshaped_"+self.classes[i]+".pdf")
def createRemoveProbabilitiesAndWeights(self,referenceclass='isB'):
import numpy
referenceidx=-1
if not referenceclass=='flatten':
try:
referenceidx=self.classes.index(referenceclass)
except:
print('createRemoveProbabilities: reference index not found in class list')
raise Exception('createRemoveProbabilities: reference index not found in class list')
if len(self.classes) > 0 and len(self.classes[0]):
self.Axixandlabel = [self.nameX, self.nameY]+ self.classes
else:
self.Axixandlabel = [self.nameX, self.nameY]
self.refclassidx=referenceidx
refhist=numpy.zeros((len(self.axisX)-1,len(self.axisY)-1), dtype='float32')
refhist += 1
if referenceidx >= 0:
refhist=self.distributions[referenceidx]
refhist=refhist/numpy.amax(refhist)
def divideHistos(a,b):
out=numpy.array(a)
for i in range(a.shape[0]):
for j in range(a.shape[1]):
if b[i][j]:
out[i][j]=a[i][j]/b[i][j]
else:
out[i][j]=-10
return out
probhists=[]
weighthists=[]
for i in range(len(self.classes)):
#print(self.classes[i])
tmphist=self.distributions[i]
#print(tmphist)
#print(refhist)
if numpy.amax(tmphist):
tmphist=tmphist/numpy.amax(tmphist)
else:
print('Warning: class '+self.classes[i]+' empty.')
ratio=divideHistos(refhist,tmphist)
ratio=ratio/numpy.amax(ratio)#norm to 1
#print(ratio)
ratio[ratio<0]=1
ratio[ratio==numpy.nan]=1
weighthists.append(ratio)
ratio=1-ratio#make it a remove probability
probhists.append(ratio)
self.removeProbabilties=probhists
self.binweights=weighthists
#make it an average 1
for i in range(len(self.binweights)):
self.binweights[i]=self.binweights[i]/numpy.average(self.binweights[i])
def createNotRemoveIndices(self,Tuple):
import numpy
if len(self.removeProbabilties) <1:
print('removeProbabilties bins not initialised. Cannot create indices per jet')
raise Exception('removeProbabilties bins not initialised. Cannot create indices per jet')
tuplelength=len(Tuple)
notremove=numpy.zeros(tuplelength)
counter=0
xaverage=[]
norm=[]
yaverage=[]
useonlyoneclass=len(self.classes)==1 and len(self.classes[0])==0
for c in self.classes:
xaverage.append(0)
norm.append(0)
yaverage.append(0)
for jet in iter(Tuple[self.Axixandlabel]):
binX = self.getBin(jet[self.nameX], self.axisX)
binY = self.getBin(jet[self.nameY], self.axisY)
for index, classs in enumerate(self.classes):
if useonlyoneclass or 1 == jet[classs]:
rand=numpy.random.ranf()
prob = self.removeProbabilties[index][binX][binY]
if rand < prob and index != self.refclassidx:
#print('rm ',index,self.refclassidx,jet[classs],classs)
notremove[counter]=0
else:
#print('keep',index,self.refclassidx,jet[classs],classs)
notremove[counter]=1
xaverage[index]+=jet[self.nameX]
yaverage[index]+=jet[self.nameY]
norm[index]+=1
counter=counter+1
if not len(notremove) == counter:
raise Exception("tuple length must match remove indices length. Probably a problem with the definition of truth classes in the ntuple and the TrainData class")
return notremove
def getJetWeights(self,Tuple):
import numpy
countMissedJets = 0
if len(self.binweights) <1:
raise Exception('weight bins not initialised. Cannot create weights per jet')
weight = numpy.zeros(len(Tuple))
jetcount=0
useonlyoneclass=len(self.classes)==1 and len(self.classes[0])==0
for jet in iter(Tuple[self.Axixandlabel]):
binX = self.getBin(jet[self.nameX], self.axisX)
binY = self.getBin(jet[self.nameY], self.axisY)
for index, classs in enumerate(self.classes):
if 1 == jet[classs] or useonlyoneclass:
weight[jetcount]=(self.binweights[index][binX][binY])
jetcount=jetcount+1
print ('weight average: ',weight.mean())
return weight
def getBin(self,value, bins):
"""
Get the bin of "values" in axis "bins".
Not forgetting that we have more bin-boundaries than bins (+1) :)
"""
for index, bin in enumerate (bins):
# assumes bins in increasing order
if value < bin:
return index-1
#print (' overflow ! ', value , ' out of range ' , bins)
return bins.size-2