-
Notifications
You must be signed in to change notification settings - Fork 176
/
Copy pathpreprocess_entry.py
executable file
·170 lines (153 loc) · 6.17 KB
/
preprocess_entry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import sys
import math
import random
from tqdm import tqdm
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="preprocess args")
parser.add_argument("--dataset", type=str, required=True)
parser.add_argument("--img_tokenizer_path", type=str, default='vqvae_hard_biggerset_011.pt')
parser.add_argument("--encode_size", type=int, default=32)
parser.add_argument("--device", type=int, default=0)
args = parser.parse_args()
print(args)
img_size = args.encode_size * 8
# args = argparse.Namespace()
# args.img_tokenizer_path = 'pretrained/vqvae/vqvae_hard_018.pt'#old path
# args.img_tokenizer_path = 'pretrained/vqvae/vqvae_hard_biggerset_011.pt'
# args.img_tokenizer_path = '/root/mnt/vqvae_1epoch_64x64.pt'
args.img_tokenizer_num_tokens = None
device = f'cuda:{args.device}'
torch.cuda.set_device(device)
name = args.dataset + "_" + args.img_tokenizer_path.split(".")[0] + ".lmdb"
args.img_tokenizer_path = f"pretrained/vqvae/{args.img_tokenizer_path}"
datasets = {}
datasets["ali"] = [
['/root/mnt/sq_gouhou_white_pict_title_word_256_fulltitle.tsv'],
['/root/mnt/dingming/ali_white_picts_256.zip'],
"tsv"
]
datasets["ks3"] = [
['/root/mnt/KS3/a_baidu_image_msg_data.json'],
['/root/mnt/KS3/downloadImages.rar'],
"json_ks"
]
datasets["zijian"] = [
['/root/mnt/zijian/zj_duomotai_clean_done_data_new.json',
'/root/mnt/zijian/zj_duomotai_local_server_last_surplus_120w.json'],
['/root/mnt/imageFolder_part01.rar',
'/root/mnt/zijian/imagesFolder_last_surplus_120w.rar'],
"json"
]
datasets["google"] = [
['/root/mnt/google/google_image_message_data.json'],
['/root/mnt/google/downloadImage_2020_12_16.rar'],
"json_ks"
]
datasets["zijian1"] = [
['/root/mnt/zijian/zj_duomotai_clean_done_data_new.json'],
['/root/cogview2/data/imageFolder_part01.rar'],
"json"
]
datasets["zijian2"] = [
['/root/mnt/zijian/zj_duomotai_local_server_last_surplus_120w.json'],
['/root/mnt/zijian/imagesFolder_last_surplus_120w.rar'],
"json"
]
txt_files, img_folders, txt_type = datasets[args.dataset]
os.environ['UNRAR_LIB_PATH'] = '/usr/local/lib/libunrar.so'
from data_utils import get_tokenizer
tokenizer = get_tokenizer(args)
model = tokenizer.img_tokenizer.model
print("finish init vqvae_model")
from preprocess.preprocess_text_image_data import extract_code,extract_code_super_resolution_patches
# ===================== Define Imgs ======================== #
from preprocess.raw_datasets import H5Dataset, StreamingRarDataset, ZipDataset
datasets = []
for img_folder in img_folders:
if img_folder[-3:] == "rar":
dataset = StreamingRarDataset(path=img_folder, transform=transforms.Compose([
transforms.Resize(img_size),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize([0.79093, 0.76271, 0.75340], [0.30379, 0.32279, 0.32800]),
]),
default_size=img_size)
elif img_folder[-3:] == "zip":
dataset = ZipDataset(path=img_folder, transform=transforms.Compose([
transforms.Resize(img_size),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize([0.79093, 0.76271, 0.75340], [0.30379, 0.32279, 0.32800]),
]))
else:
dataset = H5Dataset(path=img_folder, transform=transforms.Compose([
transforms.Resize(img_size),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize([0.79093, 0.76271, 0.75340], [0.30379, 0.32279, 0.32800]),
]))
datasets.append(dataset)
print('Finish reading meta-data of dataset.')
# ===================== END OF BLOCK ======================= #
# from preprocess import show_recover_results
# loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=8)
# loader = iter(loader)
# samples = []
# for k in range(8):
# x = next(loader)
# print(x[1])
# x = x[0].to(device)
# samples.append(x)
# samples = torch.cat(samples, dim=0)
# show_recover_results(model, samples)
# ===================== Load Text ======================== #
if txt_type == "json":
import json
txt_list = []
for txt in txt_files:
with open(txt, 'r') as fin:
t = json.load(fin)
txt_list.extend(list(t.items()))
tmp = []
for k, v in tqdm(txt_list):
tmp.append((v['uniqueKey'], v['cnShortText']))
text_dict = dict(tmp)
elif txt_type == "json_ks":
import json
txt_list = []
for txt in txt_files:
with open(txt, 'r') as fin:
t = json.load(fin)
txt_list.extend(t["RECORDS"])
tmp = []
for v in tqdm(txt_list):
tmp.append((v['uniqueKey'], v['cnShortText']))
text_dict = dict(tmp)
elif txt_type == "tsv":
import pandas as pd
txt_list = []
for txt in txt_files:
t = pd.read_csv(txt, sep='\t')
txt_list.extend(list(t.values))
tmp = []
for k, v in tqdm(txt_list):
tmp.append((str(k), v))
text_dict = dict(tmp)
else:
des = dataset.h5["input_concat_description"]
txt_name = dataset.h5["input_name"]
tmp = []
for i in tqdm(range(len(des))):
tmp.append((i, des[i][0].decode("latin-1")+txt_name[i][0].decode("latin-1")))
text_dict = dict(tmp)
print('Finish reading texts of dataset.')
# ===================== END OF BLOCK ======================= #
# extract_code(model, datasets, text_dict, name, device, txt_type)
extract_code_super_resolution_patches(model, datasets, text_dict, name, device, txt_type)