-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathTree Isomorphism II.cpp
123 lines (119 loc) · 4.33 KB
/
Tree Isomorphism II.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include<bits/stdc++.h>
using namespace std;
const int N = 3e5 + 9, mod = 1e9 + 97;
template <const int32_t MOD>
struct modint {
int32_t value;
modint() = default;
modint(int32_t value_) : value(value_) {}
inline modint<MOD> operator + (modint<MOD> other) const { int32_t c = this->value + other.value; return modint<MOD>(c >= MOD ? c - MOD : c); }
inline modint<MOD> operator - (modint<MOD> other) const { int32_t c = this->value - other.value; return modint<MOD>(c < 0 ? c + MOD : c); }
inline modint<MOD> operator * (modint<MOD> other) const { int32_t c = (int64_t)this->value * other.value % MOD; return modint<MOD>(c < 0 ? c + MOD : c); }
inline modint<MOD> & operator += (modint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline modint<MOD> & operator -= (modint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }
inline modint<MOD> & operator *= (modint<MOD> other) { this->value = (int64_t)this->value * other.value % MOD; if (this->value < 0) this->value += MOD; return *this; }
inline modint<MOD> operator - () const { return modint<MOD>(this->value ? MOD - this->value : 0); }
modint<MOD> pow(uint64_t k) const { modint<MOD> x = *this, y = 1; for (; k; k >>= 1) { if (k & 1) y *= x; x *= x; } return y; }
modint<MOD> inv() const { return pow(MOD - 2); } // MOD must be a prime
inline modint<MOD> operator / (modint<MOD> other) const { return *this * other.inv(); }
inline modint<MOD> operator /= (modint<MOD> other) { return *this *= other.inv(); }
inline bool operator == (modint<MOD> other) const { return value == other.value; }
inline bool operator != (modint<MOD> other) const { return value != other.value; }
inline bool operator < (modint<MOD> other) const { return value < other.value; }
inline bool operator > (modint<MOD> other) const { return value > other.value; }
};
template <int32_t MOD> modint<MOD> operator * (int64_t value, modint<MOD> n) { return modint<MOD>(value) * n; }
template <int32_t MOD> modint<MOD> operator * (int32_t value, modint<MOD> n) { return modint<MOD>(value % MOD) * n; }
template <int32_t MOD> istream & operator >> (istream & in, modint<MOD> &n) { return in >> n.value; }
template <int32_t MOD> ostream & operator << (ostream & out, modint<MOD> n) { return out << n.value; }
using mint = modint<mod>;
mint pw[N];
const mint P = 998244353, Q = 1e9 + 33, R = 99999989;
const int base = 10;
struct Tree {
int n;
vector<vector<int>> g;
Tree() {}
Tree(int _n) : n(_n) {
g.resize(n + 1);
}
void add_edge(int u, int v) {
g[u].push_back(v);
g[v].push_back(u);
}
vector<int> bfs(int s) {
queue<int> q;
vector<int> d(n + 1, n * 2);
d[0] = -1;
q.push(s);
d[s] = 0;
while(!q.empty()) {
int u = q.front();
q.pop();
for(auto v : g[u]) if(d[u] + 1 < d[v]) {
d[v] = d[u] + 1;
q.push(v);
}
}
return d;
}
vector<int> get_centers() {
auto du = bfs(1);
int v = max_element(du.begin(), du.end()) - du.begin();
auto dv = bfs(v);
int u = max_element(dv.begin(), dv.end()) - dv.begin();
du = bfs(u);
vector<int> ans;
for(int i = 1; i <= n; i++) if(du[i] + dv[i] == du[v] && du[i] >= du[v] / 2 && dv[i] >= du[v] / 2) {
ans.push_back(i);
}
return ans;
}
mint yo(int u, int pre = 0) {
vector<mint> nw;
for(auto v : g[u]) if(v != pre) nw.push_back(yo(v, u));
mint ans = 0;
for(auto x : nw) {
ans = ans + P.pow(x.value);
}
ans = ans * Q + R;
return ans;
}
bool iso(Tree &t) {
auto a = get_centers();
auto b = t.get_centers();
for(auto x : a) for(auto y : b) if(yo(x) == t.yo(y)) return 1;
return 0;
}
bool isoRooted(Tree &t,int root) {
return yo(root) == t.yo(root);
}
};
int32_t main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int t;
cin >> t;
while(t--) {
int n;
cin >> n;
Tree t1(n);
for(int i = 1; i < n; i++) {
int u, v;
cin >> u >> v;
t1.add_edge(u, v);
}
Tree t2(n);
for(int i = 1; i < n; i++) {
int u, v;
cin >> u >> v;
t2.add_edge(u, v);
}
if(t1.iso(t2)) cout << "YES\n";
else cout << "NO\n";
}
return 0;
}
// https://www.spoj.com/problems/TREEISO/
// https://cses.fi/problemset/task/1700
// https://cses.fi/problemset/task/1701