diff --git a/book/_toc.yml b/book/_toc.yml
index c88c8488..2d482cb2 100644
--- a/book/_toc.yml
+++ b/book/_toc.yml
@@ -159,7 +159,6 @@ parts:
- file: signal/videos
title: Supplementary Videos
- # START REMOVE-FROM-PUBLISH
- file: time_series/intro.md
title: Time Series Analysis
sections:
@@ -183,11 +182,6 @@ parts:
- file: time_series/ar_exercise.ipynb
- file: time_series/forecasting
title: "Time Series forecasting"
- # START REMOVE-FROM-PUBLISH
- - file: time_series/notebook
- title: Notebook
- # END REMOVE-FROM-PUBLISH
- # END REMOVE-FROM-PUBLISH
# START REMOVE-FROM-PUBLISH
- file: optimization/overview
diff --git a/book/intro.md b/book/intro.md
index 07dd7122..181201ce 100644
--- a/book/intro.md
+++ b/book/intro.md
@@ -1,4 +1,4 @@
-# Welcome to the MUDE Textbook
+# Welcome to the MUDE Textbook test
Welcome to the MUDE textbook for the 2024-25 academic year. This is where assigned reading is located, along with interactive exercises to practice and study the module material.
diff --git a/book/time_series/acf.md b/book/time_series/acf.md
index 3cd7a623..ab6659d1 100644
--- a/book/time_series/acf.md
+++ b/book/time_series/acf.md
@@ -3,7 +3,7 @@
Before we can look into the modelling of a stochastic process using an Autoregressive (AR) model, we first need to introduce the autocovariance function (ACF) for a stationary time series, and describe the relationship between ACF and a power spectral density (PSD).
-As in the Chapter on #TODO (add reference to obs theory), the variance component is often determined based on the precision of an observation (at a given epoch), and the covariance components quantitatively indicate the statistical dependence (or independence) between observations. In this case, dependence is inherently introduced by the physical processes that produce the signal (of which our time series is a sample), and in fact our time series methods seek to (mathematically) account for this.
+As in [Observation theory](../observation_theory/01_Introduction.md), the variance component is often determined based on the precision of an observation (at a given epoch), and the covariance components quantitatively indicate the statistical dependence (or independence) between observations. In this case, dependence is inherently introduced by the physical processes that produce the signal (of which our time series is a sample), and in fact our time series methods seek to (mathematically) account for this.
## Autocovariance and autocorrelation
@@ -12,7 +12,7 @@ Let us assume an arbitrary (discrete) stationary time series, $S=[S_1,S_2,...,S_
The *formal* (or: theoretical) autocovariance is defined as
$$
-Cov(S_t, S_{t-\tau}) =\mathbb{E}(S_tS_{t-\tau})-\mu^2
+Cov(S_t, S_{t+\tau}) =\mathbb{E}(S_tS_{t+\tau})-\mu^2
=c_{\tau}
$$
@@ -23,7 +23,7 @@ We have that $Cov(S_t, S_{t-\tau}) =Cov(S_t, S_{t+\tau})$.
Show that the covariance can be written as:
-$$Cov(S_t, S_{t-\tau}) = \mathbb{E}(S_tS_{t-\tau})-\mu^2
+$$Cov(S_t, S_{t+\tau}) = \mathbb{E}(S_tS_{t+\tau})-\mu^2
=c_{\tau}$$
@@ -31,12 +31,12 @@ $$Cov(S_t, S_{t-\tau}) = \mathbb{E}(S_tS_{t-\tau})-\mu^2
:class: tip, dropdown
$$
- Cov(S_t, S_{t-\tau})= \mathbb{E}[(S_t - \mathbb{E}(S_t))(S_{t-\tau} - \mathbb{E}(S_{t-\tau}))]\\
- = \mathbb{E}((S_t-\mu)(S_{t-\tau}-\mu))\\
- = \mathbb{E}(S_tS_{t-\tau} - \mu S_{t-\tau} - \mu S_t + \mu^2)\\
- = \mathbb{E}(S_tS_{t-\tau}) - \mu \mathbb{E}(S_{t-\tau}) - \mu \mathbb{E}(S_t) + \mu^2\\
-= \mathbb{E}(S_tS_{t-\tau}) - 2\mu^2 + \mu^2\\
-= \mathbb{E}(S_tS_{t-\tau}) - \mu^2\\
+ Cov(S_t, S_{t+\tau})= \mathbb{E}[(S_t - \mathbb{E}(S_t))(S_{t+\tau} - \mathbb{E}(S_{t+\tau}))]\\
+ = \mathbb{E}((S_t-\mu)(S_{t+\tau}-\mu))\\
+ = \mathbb{E}(S_tS_{t+\tau} - \mu S_{t+\tau} - \mu S_t + \mu^2)\\
+ = \mathbb{E}(S_tS_{t+\tau}) - \mu \mathbb{E}(S_{t+\tau}) - \mu \mathbb{E}(S_t) + \mu^2\\
+= \mathbb{E}(S_tS_{t+\tau}) - 2\mu^2 + \mu^2\\
+= \mathbb{E}(S_tS_{t+\tau}) - \mu^2\\
$$
````
:::
@@ -46,12 +46,14 @@ $$
Prove that $Cov(S_t, S_{t-\tau}) =Cov(S_t, S_{t+\tau})$:
-
````{admonition} Solution
:class: tip, dropdown
From the definition of covariance, we know that
-$$ Cov(a,b) = Cov(b,a)$$
+
+$$
+Cov(a,b) = Cov(b,a)
+$$
Hence, we have that
@@ -74,7 +76,7 @@ $$ Cov(S_t, S_{t-\tau}) = Cov(S_t, S_{t+\tau})$$
The *formal* autocorrelation is defined as
$$
-r_{\tau} = \mathbb{E}(S_tS_{t-\tau})
+r_{\tau} = \mathbb{E}(S_tS_{t+\tau})
$$
```{note}
@@ -262,42 +264,3 @@ $$
```
:::
-
-
-
-
diff --git a/book/time_series/ar_exercise.ipynb b/book/time_series/ar_exercise.ipynb
index 53e23db4..86f38cd6 100644
--- a/book/time_series/ar_exercise.ipynb
+++ b/book/time_series/ar_exercise.ipynb
@@ -10,18 +10,274 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "metadata": {},
+ "execution_count": 8,
+ "metadata": {
+ "tags": [
+ "auto-execute-page",
+ "thebe-remove-input-init"
+ ]
+ },
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n"
+ "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n",
+ "\n",
+ "data = np.array([ 0.00000000e+00, 0.00000000e+00, 7.39366373e-01, 8.82012627e-01,\n",
+ " -2.17941679e-01, 1.54974089e+00, -8.98443756e-02, 1.00141169e+00,\n",
+ " 2.42524470e-01, -1.02361298e-01, -1.10553118e+00, 3.04987823e-01,\n",
+ " -8.69761112e-01, -1.11315875e+00, -4.24734667e-01, 1.45309595e-01,\n",
+ " 5.42097653e-01, 3.77506030e-01, -7.33921297e-01, -2.31148958e-01,\n",
+ " -1.76689101e+00, -6.79235565e-01, -4.00350747e-01, -2.35241349e-01,\n",
+ " -9.07637426e-01, 2.13326549e-01, 2.18065416e-01, -1.60757882e+00,\n",
+ " -2.07263765e+00, -1.18111332e+00, -1.47885555e+00, -1.89930627e+00,\n",
+ " -1.57038634e+00, -2.07430124e+00, -1.03020905e+00, -1.05763683e+00,\n",
+ " -7.48698592e-01, -1.57544551e+00, -2.50491924e+00, -1.42908722e+00,\n",
+ " -1.08312118e+00, -1.80363252e+00, -1.04630764e+00, -1.71038000e+00,\n",
+ " -1.71349481e+00, -1.44771288e+00, 4.20877715e-01, 5.07187528e-01,\n",
+ " -4.87173992e-01, 3.24049379e-01, 2.59529792e-01, 5.04614412e-01,\n",
+ " 4.73901121e-01, 2.72281199e-01, -1.41652577e+00, -1.39176422e+00,\n",
+ " -8.29335646e-01, -4.20523393e-01, -8.41985423e-02, 9.41730115e-02,\n",
+ " -1.50729414e+00, -8.74161867e-01, 2.01810837e-01, -2.17818122e+00,\n",
+ " -5.92488929e-01, 1.07042695e+00, 4.37509451e-01, 7.22526958e-01,\n",
+ " 1.22407607e+00, 7.70631751e-01, 1.50808058e+00, -8.50142466e-01,\n",
+ " -3.73831479e-01, 1.35391870e+00, 2.18917967e+00, 2.57638726e+00,\n",
+ " 2.70701733e+00, 1.36794873e+00, 1.29999210e+00, 1.91501107e+00,\n",
+ " 1.59349872e+00, 1.97732807e+00, 2.49992433e+00, 1.93175636e+00,\n",
+ " 1.47660557e+00, 1.17536071e+00, 1.39557491e+00, 1.44857054e+00,\n",
+ " 7.89092903e-01, -6.46392931e-01, 2.95521216e-01, -1.08968239e-01,\n",
+ " -3.85438702e-01, -3.58086137e-01, -5.09981434e-01, -2.05496939e+00,\n",
+ " -3.64585529e-01, -3.96458235e-02, 3.53929808e-01, 1.58901411e+00,\n",
+ " 9.53132950e-02, 7.67470550e-01, 1.15384857e+00, 7.96439922e-01,\n",
+ " 9.76627268e-01, 3.47042888e-01, 1.00590245e+00, 1.50082738e-01,\n",
+ " 2.37379710e-01, 1.96873095e+00, 2.20072042e+00, 1.56046852e+00,\n",
+ " 6.64436129e-01, 2.96544445e-01, 1.72227831e+00, 1.10644286e+00,\n",
+ " 1.63238235e+00, 6.63026552e-01, 3.61978366e-01, 6.45668467e-01,\n",
+ " 1.27851822e+00, 2.65148989e+00, 9.99420989e-01, 3.58085372e-01,\n",
+ " -4.62291606e-01, 9.37518000e-01, 1.23164122e+00, -3.12475856e-01,\n",
+ " 1.36065286e-01, -6.16493968e-02, 6.69941343e-01, -3.42736465e-01,\n",
+ " -1.34703063e+00, -1.67947236e+00, 5.69358500e-01, 5.83468985e-01,\n",
+ " 7.41796103e-01, 6.39326772e-01, 2.10445565e-01, 3.92168977e-01,\n",
+ " 6.40725851e-01, 8.99547148e-01, 1.00500576e+00, -8.71818439e-02,\n",
+ " 4.04000299e-02, 8.70113665e-01, -1.44264848e-01, 5.39213359e-01,\n",
+ " 6.66901278e-01, 8.72123995e-01, 1.84825136e+00, 1.10125095e+00,\n",
+ " 9.95721987e-01, 6.26088972e-01, 7.62512607e-01, 1.16511511e-01,\n",
+ " 4.22571492e-01, 9.89100398e-02, 5.49712966e-01, -1.56725388e-01,\n",
+ " 4.27536063e-01, 2.05360843e-01, -5.64858058e-01, -2.69873034e-02,\n",
+ " -9.37568737e-01, 8.65612664e-01, -3.69365069e-01, 2.39337297e+00,\n",
+ " 8.60106273e-01, 3.29178916e+00, 1.71736403e+00, 2.13874664e+00,\n",
+ " 1.48955823e+00, 1.48006688e+00, -6.88803421e-01, -3.24234835e-01,\n",
+ " -1.24331549e+00, -6.66509456e-01, -9.04246649e-01, -1.90451608e+00,\n",
+ " -9.87961104e-01, -5.48066393e-01, -1.57398280e-01, -4.07591149e-01,\n",
+ " 1.15083345e+00, 5.88506643e-01, -5.92900945e-01, -3.44438570e-01,\n",
+ " -7.29310067e-01, 5.74169750e-01, 4.04520673e-01, -2.20288636e-01,\n",
+ " -2.77120327e-02, 9.88213495e-02, -1.09190567e+00, 7.19825871e-02,\n",
+ " -9.84122442e-01, -1.80535953e-01, -5.14311755e-01, -6.47274166e-01,\n",
+ " -7.56479222e-01, 1.08118071e-01, -9.57690388e-01, -1.57851451e+00,\n",
+ " -1.31524418e+00, -1.40305337e+00, -2.54378176e+00, -1.84970651e+00,\n",
+ " -2.32341947e+00, -1.60528868e+00, -6.02478175e-01, -1.51805873e+00,\n",
+ " -6.37833606e-01, 2.76604125e-01, -2.33841731e-01, -1.36818872e+00,\n",
+ " -5.72040718e-01, 6.55878864e-01, 1.13125989e+00, 2.20828257e+00,\n",
+ " 1.08565693e+00, 1.28351412e-01, 5.46169855e-01, 5.93641545e-01,\n",
+ " 6.04036418e-01, 3.49137797e-01, -1.83183726e-01, 6.16385128e-01,\n",
+ " 2.10314828e-01, 3.45091013e-01, -6.13021032e-01, 1.26537948e+00,\n",
+ " 7.35755004e-01, -1.91878585e-01, -1.02143047e+00, -8.41844559e-01,\n",
+ " -9.04793546e-01, 9.84542133e-01, 4.52293503e-01, -8.17515258e-01,\n",
+ " -2.38201270e-01, 2.09588612e-01, 3.10936455e-01, -6.13386042e-02,\n",
+ " 4.45269097e-01, -1.22797128e+00, -2.25841101e-01, 6.68332290e-01,\n",
+ " 2.14404817e+00, 6.70914150e-01, 1.79696828e+00, 2.49805512e+00,\n",
+ " 3.64554459e-01, -2.28644444e-01, -1.09699150e+00, -1.03731317e+00,\n",
+ " -3.96379156e-01, -1.38065556e+00, -3.82528623e-01, -1.02683833e+00,\n",
+ " -1.51626243e+00, -3.08281555e-02, -1.61811653e-01, -3.08337884e-01,\n",
+ " 6.78369204e-02, -1.07006199e+00, -5.79365880e-01, 2.51602954e-01,\n",
+ " -1.39343464e+00, -1.05284048e+00, -1.06705460e+00, -4.86584542e-01,\n",
+ " -2.45306112e+00, -1.49506393e+00, -2.64593592e+00, -3.01740934e+00,\n",
+ " -1.77716519e+00, -2.71373930e+00, -2.03803161e+00, -1.20648230e+00,\n",
+ " -1.03999481e+00, -9.91418930e-01, -9.91249144e-01, -8.44261622e-01,\n",
+ " -1.50101351e+00, -1.25887947e-01, -1.40571889e+00, 4.88496184e-01,\n",
+ " -8.47740317e-01, 2.53055261e-01, 4.07728654e-01, 3.71441178e-01,\n",
+ " 2.60954268e-01, 6.91881170e-01, 1.35204560e+00, 1.66126779e+00,\n",
+ " 3.87633110e-02, 5.74308554e-02, -4.90039426e-01, -3.51960048e-01,\n",
+ " -3.40826500e-01, -4.29096877e-01, -1.51329551e-01, 7.01787314e-01,\n",
+ " -6.57970553e-01, 6.63866169e-01, 3.83965676e-01, 9.80863226e-01,\n",
+ " 1.26264195e+00, 1.60111452e+00, 1.71967437e+00, 1.27973984e+00,\n",
+ " -1.32558645e-01, 1.04491727e+00, 1.02027173e+00, 1.30056175e+00,\n",
+ " 1.24801760e+00, 1.83402451e+00, 1.53001108e+00, 1.71737846e+00,\n",
+ " 1.57527834e+00, 2.04640540e+00, 2.42281956e+00, 8.27044471e-01,\n",
+ " 2.10345979e+00, 1.06201511e+00, 1.47960807e+00, 9.71628403e-01,\n",
+ " 5.21057069e-01, 5.03029167e-01, 4.21029664e-01, 1.10529512e+00,\n",
+ " 6.54941435e-01, -4.79959006e-01, 8.01560793e-01, 3.78517418e-01,\n",
+ " 5.08672026e-01, 1.68601802e-01, -3.90663606e-02, 1.62149508e+00,\n",
+ " 1.45669361e+00, 1.24135471e+00, -7.00934966e-01, -9.13895360e-01,\n",
+ " 4.83077266e-01, 4.50055520e-01, -1.17878557e+00, -6.26810617e-01,\n",
+ " 7.11486395e-02, -1.66610081e-01, -4.00110856e-01, -1.59543090e-01,\n",
+ " 3.69607167e-01, 1.05543185e+00, 1.27906214e+00, 1.23240685e+00,\n",
+ " 2.09226813e+00, 8.90031863e-01, 2.22894835e+00, 6.97854347e-01,\n",
+ " 1.09524514e+00, 3.24695184e-01, 7.28042788e-04, -4.45720862e-01,\n",
+ " -5.73334022e-02, 1.23575766e+00, 1.31635328e-01, 8.67518743e-01,\n",
+ " 1.56059963e+00, 6.31070006e-01, 1.04464919e+00, -8.84947785e-01,\n",
+ " 1.31704400e+00, 9.86125573e-01, 2.02759151e+00, 1.48625969e+00,\n",
+ " 3.72770752e-02, 1.67338281e+00, 1.82601616e+00, 4.32808593e-01,\n",
+ " 1.91126665e+00, -1.40124317e-02, -6.15394675e-01, 1.24704749e+00,\n",
+ " 1.30533712e+00, 1.15308051e+00, 1.59741846e+00, 1.07918179e+00,\n",
+ " 3.55408514e-01, 1.15370940e-01, -8.76059920e-01, -1.33802778e+00,\n",
+ " 1.85639559e-01, -2.42649844e-01, -1.02996400e+00, 4.39484660e-01,\n",
+ " -1.07934516e+00, -2.43198782e-01, 7.12058866e-01, -3.74227516e-01,\n",
+ " 8.88699033e-01, -3.97313023e-01, 2.86881825e-01, 4.79528683e-01,\n",
+ " 1.96059535e+00, 1.90794329e+00, 1.21424753e+00, -9.31731368e-03,\n",
+ " -3.57476964e-01, -6.54898612e-01, -8.55912921e-01, 4.82253263e-01,\n",
+ " 7.82414953e-02, -1.16817948e-02, 1.02454754e-01, 4.75701199e-01,\n",
+ " 2.87974276e-02, 7.23507213e-01, 1.11294268e+00, 1.54304889e+00,\n",
+ " 2.55006078e+00, 1.97330796e+00, 4.55008481e-01, 9.08155981e-01,\n",
+ " -3.16408466e-01, -9.11070592e-01, -1.19885254e+00, -1.49425998e+00,\n",
+ " -3.70184461e-01, -1.33816807e+00, 9.85350424e-02, -4.17349272e-01,\n",
+ " 9.88553840e-01, 3.70111247e-01, 9.00847240e-01, 1.63814995e-01,\n",
+ " 1.36672484e+00, 1.06231592e+00, 6.86277219e-01, -1.36714690e-01,\n",
+ " -2.10193654e-01, 1.03258012e+00, 8.99548082e-01, 9.98615963e-01,\n",
+ " -6.21537335e-01, 5.45974283e-01, 7.76469620e-01, 1.50429680e+00,\n",
+ " 7.48151842e-01, 4.43051388e-01, 8.08282554e-01, 4.68694570e-01,\n",
+ " -9.76716836e-01, -5.65906274e-01, -9.79593683e-01, 9.32812962e-01,\n",
+ " 1.09446918e+00, 1.53156737e+00, 6.07745371e-01, 8.90444322e-01,\n",
+ " 2.58227806e-01, 1.08671023e+00, 1.96989982e-01, -6.81961888e-01,\n",
+ " -9.03880880e-01, -9.70885459e-01, -2.65810797e-01, -4.29907694e-01,\n",
+ " 4.06336577e-01, 4.78504065e-01, 1.27168476e-01, 1.46771856e+00,\n",
+ " 1.36753502e+00, 4.02762296e-01, 3.64682830e-01, -3.78703131e-01,\n",
+ " 2.96891803e-01, -7.54382156e-01, 1.28006210e+00, -6.86188078e-02,\n",
+ " 1.20052445e+00, -1.66199770e-02, 6.87313607e-01, 7.05341388e-01,\n",
+ " 1.09361043e+00, -5.62887584e-02, -1.02212099e-01, -3.98220516e-01,\n",
+ " -6.35448516e-01, -1.23454870e+00, 3.30223301e-01, 6.36362445e-01,\n",
+ " 5.95033506e-01, -1.21809241e-01, -1.01669089e+00, -2.83311223e+00,\n",
+ " 7.05074907e-02, -8.14821554e-01, -1.09891995e-01, 8.46936249e-02,\n",
+ " 9.89420750e-01, 1.19584073e-01, -2.55632428e-01, 1.78726604e+00,\n",
+ " 1.15139811e+00, 7.30881522e-01, 3.73337741e-01, -8.84734893e-01,\n",
+ " 9.15512809e-01, 3.48834785e-01, -6.83496242e-01, 1.44386150e+00,\n",
+ " 9.40535741e-01, 1.61809060e+00, 5.90633602e-01, -1.81711114e-01,\n",
+ " -5.43810530e-01, -9.47633330e-01, -1.08840745e+00, -2.12147676e+00,\n",
+ " -1.93298030e+00, -1.81721802e+00, -8.60719118e-01, -5.87439117e-01,\n",
+ " -4.42704828e-01, -7.71683303e-01, -7.09202014e-01, -1.01576221e+00,\n",
+ " -1.00405087e+00, -2.35322370e+00, -1.55945639e+00, -1.93038555e+00,\n",
+ " -1.77439000e+00, -7.31110363e-01, -1.11229932e+00, -5.53420963e-01,\n",
+ " -2.54646158e+00, 1.30171409e-01, 9.58477732e-02, -1.67702799e-01,\n",
+ " 1.07557175e-01, 9.39260555e-01, -1.01729680e+00, -7.51412913e-03,\n",
+ " 2.50457369e-02, -7.93504732e-01, 7.66769888e-02, -4.91396297e-01,\n",
+ " -6.23168011e-01, 5.56471001e-01, -1.47489436e+00, -1.80051893e-01,\n",
+ " -9.29699644e-01, -2.86270863e-01, -4.03645146e-01, -1.59207517e+00,\n",
+ " -1.51789958e+00, -5.17777627e-01, -1.44915841e+00, -2.82704891e-01,\n",
+ " -7.77895523e-01, 4.24394846e-02, 6.39871136e-01, -8.25068603e-01,\n",
+ " 1.70283470e-01, -3.04672894e-01, 7.57377629e-01, 2.81579728e-01,\n",
+ " 9.00245371e-01, 4.38308567e-01, 6.62981478e-01, 2.26340506e-01,\n",
+ " 6.55124877e-01, -4.74574465e-02, 5.83536959e-01, 3.30224150e-01,\n",
+ " 1.74725260e+00, 2.92914951e-01, 6.53733549e-01, 1.90472489e+00,\n",
+ " 2.13062770e+00, 8.29887814e-01, 1.78665718e+00, 3.36002901e+00,\n",
+ " 1.80680569e+00, 7.24783016e-01, -8.31104542e-02, 1.06971812e+00,\n",
+ " -7.92409025e-01, -1.12136978e-02, 1.36246834e-01, -3.96155791e-01,\n",
+ " -5.17756929e-02, -5.53090799e-01, 1.27895232e-01, -1.14333497e-01,\n",
+ " 5.69661453e-02, -1.30418263e+00, -4.20354967e-01, -9.69997976e-02,\n",
+ " 1.25838428e+00, 7.67147245e-01, -1.96356797e-01, -7.25875722e-01,\n",
+ " 9.13773378e-03, -1.92841740e-01, 1.36680690e+00, 7.85367122e-02,\n",
+ " 1.43978042e+00, 3.53036371e-01, 3.21726380e-01, 7.27328771e-01,\n",
+ " 3.42772844e-01, -8.08014869e-01, -7.84040601e-01, -9.71464217e-01,\n",
+ " -3.38824750e-01, -1.28809967e+00, -3.87057040e-01, -9.72010741e-01,\n",
+ " -1.39459163e+00, -5.41007591e-01, -1.38221603e+00, -1.88021763e+00,\n",
+ " -1.25018544e+00, -8.95854470e-01, -2.42330929e+00, -1.93677650e+00,\n",
+ " -2.85864261e+00, -2.28733387e+00, -3.12822402e+00, -2.65251704e+00,\n",
+ " -3.18254573e+00, -2.43695779e+00, -3.33016093e+00, -2.56150214e+00,\n",
+ " -2.40580874e+00, -2.04801271e+00, -9.45886359e-01, -4.80283888e-01,\n",
+ " -9.02308417e-01, 4.39017348e-02, 1.40193351e+00, 1.12539513e-04,\n",
+ " 1.20803285e+00, -1.05656599e-01, -8.15697707e-01, -1.33205596e+00,\n",
+ " -1.11363610e+00, -1.55571463e+00, -2.35843487e+00, -3.80555093e-01,\n",
+ " -1.42667129e-01, 1.87343826e-01, -9.03622737e-01, 1.58042120e+00,\n",
+ " 9.14429754e-01, 1.43619930e+00, 1.91061472e+00, 9.74028580e-01,\n",
+ " 5.34409977e-01, -1.90812107e-01, 1.31103428e+00, 2.35584323e+00,\n",
+ " 1.02766574e+00, 4.17273584e-01, 1.34848289e+00, 1.26365466e+00,\n",
+ " 1.24666532e-02, 2.31648529e-02, -2.83896716e-01, 3.74971332e-01,\n",
+ " 1.59599098e-01, 6.12558213e-01, -8.27835045e-02, 7.12749888e-01,\n",
+ " 1.34679669e+00, 1.12912214e+00, 5.15484989e-01, 6.28624387e-01,\n",
+ " -2.45869042e-01, 3.27209328e-01, -4.96825605e-01, 1.31898972e-01,\n",
+ " -1.81544836e-01, 5.41585156e-01, 8.66005696e-01, -1.34887158e+00,\n",
+ " -1.05298192e+00, -3.55200747e-02, -6.17742426e-02, 3.15934090e-01,\n",
+ " 7.58516075e-01, -1.28638664e-01, -3.62368353e-01, 1.85925648e-01,\n",
+ " 1.10367660e+00, -4.71440744e-02, 1.15255335e+00, 9.62837157e-01,\n",
+ " 1.01530785e+00, 5.16531675e-01, 5.18742934e-01, 7.35507772e-01,\n",
+ " 3.67891288e-01, -9.15120567e-01, -7.12922515e-01, 7.95935851e-01,\n",
+ " -8.24176529e-01, 1.01923996e-01, -7.19323604e-01, -8.11150057e-01,\n",
+ " 2.11116100e-01, 7.08622195e-01, 1.20049183e+00, 1.07098285e+00,\n",
+ " 3.68214610e-01, 3.54257026e-01, 7.05818294e-02, -3.39895972e-01,\n",
+ " -1.16645409e-01, 1.82229015e-01, -7.70677164e-01, -9.31566188e-01,\n",
+ " 1.47087451e-01, 1.06149338e+00, 1.15550485e+00, 8.00273717e-01,\n",
+ " 1.55176802e+00, 2.10226314e+00, 3.95218245e-01, 2.77919345e-01,\n",
+ " 1.46034669e+00, 1.19407058e+00, 1.95311543e+00, 1.77257448e+00,\n",
+ " 4.11952827e-01, -1.03775982e-01, 1.60578453e-01, -5.78448463e-01,\n",
+ " -6.74402250e-02, -5.38429388e-02, -9.56971433e-01, -1.77622550e-01,\n",
+ " -2.58961602e-01, 6.06878724e-01, -2.61909649e-01, -3.05580909e-01,\n",
+ " -6.47796264e-01, -1.38091098e+00, -8.81668249e-01, -4.40749857e-01,\n",
+ " -9.64560692e-01, -9.02942803e-01, -1.51032638e+00, -9.78485228e-01,\n",
+ " -1.35448247e+00, -5.20396184e-01, -1.63593472e-01, 1.39960962e-01,\n",
+ " 7.61197724e-01, -1.80842551e-01, -6.66113910e-01, -2.03078431e-02,\n",
+ " 4.59656603e-02, -6.24886605e-01, -7.55849348e-01, -2.62076342e-01,\n",
+ " 1.10954752e-01, -9.38955437e-01, -3.39143906e-01, -8.10682908e-01,\n",
+ " 4.23887208e-01, 8.61515571e-01, 6.65772041e-01, 2.31012501e+00,\n",
+ " 2.24641806e+00, 2.03232659e+00, 2.50357257e+00, 2.28339898e+00,\n",
+ " 1.95069044e+00, 1.63523854e+00, 1.37286544e+00, 2.43219243e+00,\n",
+ " 2.55092337e+00, 1.76595226e+00, -8.62412017e-02, 1.59579762e+00,\n",
+ " 5.08483834e-01, 4.15151476e-01, 6.93189435e-01, 9.21821403e-01,\n",
+ " 1.29025111e+00, 7.93774884e-02, 6.80210192e-02, -6.94808049e-01,\n",
+ " -3.51609274e-01, 1.47062707e+00, 5.89348866e-01, 2.11627876e+00,\n",
+ " 6.52185541e-01, 1.26132338e+00, 6.98691324e-01, 3.48855150e-01,\n",
+ " -1.33109062e+00, -1.47342324e+00, 1.09013417e+00, -1.11974953e-02,\n",
+ " 4.17028815e-01, 3.76022584e-01, 2.70449474e-01, 5.42963217e-01,\n",
+ " -2.79830499e-01, -4.99062723e-01, 1.69929223e-01, -6.13573591e-01,\n",
+ " -7.45367870e-01, -9.69028857e-01, -2.33629353e+00, -2.03188486e+00,\n",
+ " -1.81089730e+00, -1.49790534e+00, -1.99281756e+00, -1.81819238e+00,\n",
+ " -1.47388646e+00, -1.81642763e+00, -2.32034092e+00, -9.46747332e-01,\n",
+ " -6.22658430e-01, -6.70254068e-01, -1.25268470e+00, -5.51126224e-01,\n",
+ " 1.12351647e+00, 7.41654766e-01, -4.56727439e-01, -5.36036952e-01,\n",
+ " 3.79299501e-01, 6.10543198e-01, 1.04647975e+00, -5.26770962e-02,\n",
+ " 9.10931820e-01, 2.88667270e-01, 1.43372970e+00, 8.83455823e-01,\n",
+ " 7.40768747e-01, 1.02984778e+00, -1.46106980e-01, 3.70249466e-01,\n",
+ " -5.48979579e-01, -1.64568153e+00, 3.48798867e-01, 2.17017707e-01,\n",
+ " -1.37474632e-01, 9.53455170e-01, -7.06646698e-01, -7.85727930e-01,\n",
+ " 3.17707117e-01, -7.46688323e-01, 5.72143464e-01, 1.22252222e+00,\n",
+ " 6.49886478e-01, 1.11199626e+00, 2.98352821e+00, 2.47769388e+00,\n",
+ " 1.18576263e+00, 5.33805666e-01, 2.10096587e+00, 1.59574729e+00,\n",
+ " 1.31832487e+00, 3.84267233e-01, 1.18968620e+00, 2.39827315e+00,\n",
+ " 1.53984467e+00, 1.73049810e+00, 3.03364076e-01, -7.57727641e-01,\n",
+ " -6.75717011e-01, -1.05885226e+00, -7.91154756e-01, 2.93195048e-01,\n",
+ " -8.55754313e-01, -2.03581616e-01, -4.70712707e-01, 4.37962580e-01,\n",
+ " 8.03218956e-01, 5.72756250e-01, -2.09349498e-01, 6.93622013e-01,\n",
+ " 1.52325261e+00, 7.46335450e-01, 1.04179128e+00, 6.93180243e-01,\n",
+ " 6.15903795e-01, 1.72977174e+00, -8.97999867e-02, 2.50893420e+00,\n",
+ " 1.78139472e+00, 1.30976033e+00, 5.56591118e-01, 2.35011371e-01,\n",
+ " -3.85188166e-01, -4.47569045e-01, -1.24490106e-02, -3.24913641e-02,\n",
+ " 7.26347917e-01, -7.93962450e-01, -1.13628472e+00, -3.70710503e-01,\n",
+ " -1.41297811e+00, -7.05695681e-01, -6.89106682e-01, -8.76022961e-01,\n",
+ " -6.35076122e-01, -2.20968410e+00, -1.66157685e+00, -2.78915712e-01,\n",
+ " -7.35596283e-01, -7.08503954e-01, 1.98219493e-01, -1.47695316e+00,\n",
+ " -4.35808912e-01, -1.13217275e-01, -1.08390134e+00, 8.56553143e-01,\n",
+ " 5.19019577e-01, 4.48514228e-01, -1.49052322e-01, 1.64228141e-01,\n",
+ " -2.38744808e-02, -9.94880817e-01, -1.09619291e+00, -1.23149681e+00,\n",
+ " -2.29443615e+00, -9.24490557e-01, -1.41361200e+00, -1.14823308e+00,\n",
+ " 6.35477621e-01, 5.99331444e-01, -5.51869204e-01, 4.57836691e-01,\n",
+ " 1.36644386e+00, 1.99158100e+00, 1.05917265e+00, -6.20214682e-01,\n",
+ " -3.03986356e-01, 9.21210441e-01, 1.86984440e+00, 7.19809989e-01,\n",
+ " 2.24614850e-01, 1.83986293e+00, -4.98484113e-01, 8.48969414e-01,\n",
+ " 1.46145990e+00, 4.64898199e-01, 5.95667867e-01, -1.65015303e-01,\n",
+ " 4.98926356e-01, 1.27696976e+00, 6.31788684e-01, 9.02383220e-01,\n",
+ " 9.09245114e-02, -8.33510548e-01, -7.73376882e-01, 4.20514784e-01,\n",
+ " 4.00816394e-01, 4.23429604e-01, 7.03190294e-01, 2.45607983e-01,\n",
+ " 1.12766363e-01, 2.29990495e-01, 1.44303637e-01, 2.98763762e-01,\n",
+ " 1.66542808e+00, 2.09103268e+00, 1.90449043e+00, 1.72099303e+00,\n",
+ " 1.25933300e+00, 2.29352112e+00, 1.97652899e-01, 1.17981554e+00,\n",
+ " -1.11019238e+00, -3.31291763e-01, -4.81943208e-01, -1.57380538e+00,\n",
+ " -8.01543386e-01, -1.57373293e+00, -6.11527712e-01, -1.17852491e+00,\n",
+ " 4.34070610e-01, -9.47518014e-01, -1.21053098e+00, -8.52856246e-01,\n",
+ " -1.25192446e+00, -1.30987448e-01, 2.71523161e-01, -1.02593613e+00,\n",
+ " 4.19178470e-01, -3.32333953e-01, -7.02741725e-01, 1.18590220e+00])\n"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
"outputs": [
{
@@ -36,8 +292,6 @@
}
],
"source": [
- "#load data\n",
- "data = np.loadtxt('generated_time_series.csv', delimiter=',', skiprows=1)\n",
"\n",
"#plot data\n",
"plt.figure(figsize=(12, 4))\n",
@@ -148,8 +402,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "AR(1) vs AR(2) test statistic: -2 Critical value: 3.841458820694124\n",
- "Fail to reject AR(1)\n",
+ "AR(1) vs AR(2) test statistic: 65.46386398456401 Critical value: 3.841458820694124\n",
+ "Reject AR(1) in favor of AR(2)\n",
"AR(2) vs AR(3) test statistic: 3.5318291727430835 Critical value: 3.841458820694124\n",
"Fail to reject AR(2)\n"
]
@@ -186,7 +440,6 @@
"dof = 1\n",
"crit = chi2.ppf(0.95, dof)\n",
"test_stat = n * np.log(rss1 / rss2)\n",
- "test_stat = -2 \n",
"print('AR(1) vs AR(2) test statistic:', test_stat, 'Critical value:', crit)\n",
"\n",
"if test_stat > crit:\n",
@@ -215,7 +468,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
diff --git a/book/time_series/arma.md b/book/time_series/arma.md
deleted file mode 100644
index 51133d3d..00000000
--- a/book/time_series/arma.md
+++ /dev/null
@@ -1,362 +0,0 @@
-(ARMA)=
-# ARMA process
-
-The main goal is to introduce the AutoRegressive Moving Average (ARMA) model to describe a **stationary stochastic process**. Hence the ARMA model can be applied on time series where e.g. trend and seasonality are not present / removed, and only noise remains, or after applying other methods [to obtain a stationary time series](stationarize).
-
-## Process definition
-
-In an ARMA model, we forecast the variable of interest using a linear combination of its past values plus the current and past errors. A zero mean ARMA process of orders $p$ and $q$ can be written as follows:
-
-$$S_t = \overbrace{\beta_1S_{t-1}+...+\beta_pS_{t-p}}^{\text{AR process}} + e_t + \overbrace{\theta_1 e_{t-1}+...+\theta_q e_{t-q}}^{\text{MA process}}$$
-
-or as
-
-$$S_t = \sum_{i=1}^p \beta_iS_{t-i}+e_t+\sum_{i=1}^q \theta_i e_{t-i}$$
-
-Each observation is made up of a **random error** $e_t$ at that epoch, a linear combination of **past observations**, and a linear combination of **past errors**. The errors $e_t$ are uncorrelated purely random noise process, known also as white noise. We note the process should still be stationary, satisfying
-
-$$\mathbb{E}(S_t)=0, \hspace{20px} \mathbb{D}(S_t)=\sigma^2,\quad \forall t$$
-
-This indicates that parts of the total variability of the process come from the signal and noise of past epochs, and only a (small) portion belongs to the noise of that epoch (denoted as $e_t$). To have a better understanding of the process itself, we consider two special cases, $q=0$ and $p=0$.
-
-### Special case 1: ARMA$(p,0) = $ AR$(p)$
-
-The first special case we are going to study considers $q=0$. A zero mean $p$-order autoregressive (AR) random process, abbreviated to ARMA($p,0$) = AR($p$), can be written as follows
-
-$$S_t = \beta_1S_{t-1}+...+\beta_pS_{t-p} + e_t=S_t = \sum_{i=1}^p \beta_iS_{t-i}+e_t$$
-
-#### First-order AR(1) process
-
-We will just focus on explaining $p=1$, i.e. the AR(1) process. A **zero-mean first order autoregressive** process can be written as follows
-
-$$S_t = \beta S_{t-1}+e_t, \hspace{20px} -1\leq\beta<1, \hspace{20px} t=2,...,m$$
-
-where $e_t$ is an i.i.d. noise process, e.g. distributed as $e_t\sim N(0,\sigma_{e}^2)$. See later the definition of $\sigma_{e}^2$.
-
-:::{card} Exercise
-
-In a zero-mean first order autoregressive process, abbreviated as AR(1), we have $m=3$ observations, $\beta=0.8$, and the generated white noise errors are $e = [e_1,\, e_2,\, e_3]^T=[1,\, 2,\, -1]^T$. What is the generated AR(1) process $S = [S_1,\, S_2,\, S_3]^T$?
-
-a. $S = \begin{bmatrix}1 & 2.8 & 1.24\end{bmatrix}^T$
-b. $S = \begin{bmatrix} 0 & 2 & 0.6 \end{bmatrix}^T$
-c. $S = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}^T$
-
-```{admonition} Solution
-:class: tip, dropdown
-
-The correct answer is **a**. The AR(1) process can be initialized as $S_1=e_1=1$. The next values can be obtained through:
-
-$$
-S_t = \beta S_{t-1} + e_t
-$$
-
-Giving $S_2=0.8 S_1 + e_2 = 0.8\cdot 1 + 2 = 2.8$ and $S_3=0.8 S_2 + e_3 = 0.8\cdot 2.8 - 1= 1.24$, so we have:
-
-$$
-S =
-\begin{bmatrix}1 & 2.8 & 1.24\end{bmatrix}^T
-$$
-
-```
-:::
-
-**Formulation**
-
-Initializing $S_1=e_1$, with $\mathbb{E}(S_1)=\mathbb{E}(e_1)=0$ and $\mathbb{D}(S_1)=\mathbb{D}(e_1)=\sigma^2$. Following this, multiple applications of the above "autoregressive" formula ($S_t = \beta S_{t-1} + e_t$) gives:
-
-$$
-\begin{align*}
-S_1&=e_1\\
-S_2&=\beta S_1+e_2\\
-S_3 &= \beta S_2+e_3 = \beta^2S_1+\beta e_2+e_3\\
-&\vdots\\
-S_m &= \beta S_{m-1} + e_m = \beta^{m-1}S_1+\beta^{m-2}e_2+...+\beta e_{m-1}+e_m
-\end{align*}
-$$
-
-of which we still have (in order to impose the *stationarity*):
-
-$$\mathbb{E}(S_t)=0 \hspace{5px}\text{and}\hspace{5px} \mathbb{D}(S_t)=\sigma^2, \hspace{10px} t=1,...,m$$
-
-All the error components, $e_t$, are uncorrelated such that $Cov(e_t,e_{t+\tau})=0$ if $\tau \neq 0$, and with variance $\sigma_{e}^2$ which still needs to be determined.
-
-**Autocovariance**
-
-The mean of the process is zero and, therefore:
-
-$$\mathbb{E}(S_t) = \mathbb{E}(\beta S_{t-1}+e_t) = \beta\mathbb{E}(S_{t-1})+\mathbb{E}(e_t) = 0$$
-
-The variance of the process should remain constant as:
-
-$$\mathbb{D}(S_t) = \mathbb{D}(\beta S_{t-1} +e_t) \Leftrightarrow \sigma^2=\beta^2\sigma^2+\sigma_{e}^2, \hspace{10px} t\geq 2$$
-
-resulting in
-
-$$\sigma_{e}^2 = \sigma^2 (1-\beta^2)$$
-
-indicating that $\sigma_{e}^2$ is smaller than $\sigma^2$.
-
-The autocovariance (covariance between $S_t$ and $S_{t+\tau}$) is
-
-$$
-\begin{align*}
-c_{\tau}&=\mathbb{E}(S_t S_{t+\tau})-\mu^2 =\mathbb{E}(S_t S_{t+\tau})\\
-&= \mathbb{E}(S_t(\beta^\tau S_t + \beta^{\tau-1} e_{t+1}+...)) = \beta^\tau\mathbb{E}(S_t^2)=\sigma^2\beta^\tau
-\end{align*}$$
-
-In the derivation above we used that:
-
-$$
-\begin{align*}
-S_{t+\tau}=\beta^\tau S_t + \beta^{\tau-1} e_{t+1}+...+e_{t+\tau}
-\end{align*}
-$$
-
-and the fact that $S_t$ and $e_{t+\tau}$ are uncorrelated for $\tau \neq 0$.
-
-```{admonition} Derivation (optional)
-:class: tip, dropdown
-
-$$
-\begin{align*}
-S_{t+\tau}&= \beta^{t+\tau-1}S_1 + \beta^{t+\tau-2}e_2+...+ \beta^{\tau} e_{t}+ \beta^{\tau-1} e_{t+1}+...+e_{t+\tau}\\
-&= \beta^{\tau} \left(\beta^{t-1}S_1 + \beta^{t-2}e_2+...+ e_{t}\right)+ \beta^{\tau-1} e_{t+1}+...+e_{t+\tau}\\
-&=\beta^\tau S_t + \beta^{\tau-1} e_{t+1}+...+e_{t+\tau}
-\end{align*}
-$$
-
-```
-
-**Model structure of AR(1)**
-
-$$\mathbb{E}(S) = \mathbb{E}\begin{bmatrix}S_1\\ S_2\\ \vdots\\ S_m\end{bmatrix} = \begin{bmatrix}0\\ 0\\ \vdots\\ 0\end{bmatrix}, \hspace{15px} \mathbb{D}(S)=\Sigma_{S}=\sigma^2 \begin{bmatrix}1&\beta&...&\beta^{m-1}\\ \beta&1&...&\beta^{m-2}\\ \vdots&\vdots&\ddots&\vdots\\ \beta^{m-1}&\beta^{m-2}&...&1\end{bmatrix}$$
-
-* Autocovariance function $\implies$ $c_{\tau}=\sigma^2\beta^\tau$
-* Normalized autocovariance function (ACF) $\implies$ $\rho_\tau=c_{\tau}/c_0=\beta^\tau$
-* Larger value of $\beta$ indicates a long-memory random process
-* If $\beta=0$, this is called *purely random process* (white noise)
-* ACF is even, $c_{\tau}=c_{-\tau}=c_{|\tau|}$ and so is $\rho_{\tau}=\rho_{-\tau}=\rho_{|\tau|}$
-
-Later in this section we will see how the coefficient $\beta$ can be estimated.
-
-**Simulated example**
-
-A time series has been simulated to have a standard normal distribution, $S_i \sim N(0,1)$. This indicates that the first entry is $S_1 \sim \text{N}(0,1)$ and the remaining errors are $e_i \sim N(0,1-\beta^2)$, $i=2,...,m=1000$. The time series is shown in {numref}`ar1example`. Time correlation can be visually seen in the data.
-
-The normalized ACF shows the temporal correlation, $\rho_{\tau}=\beta^{\tau}$, where $\tau=0,1,2,...,m-1$.
-
-```{figure} ./figs/ar1example.png
-:name: ar1example
-:width: 600px
-:align: center
-
-Left: time series for $\beta =0.7$ and $\beta =-0.7$. Right: corresponding normalized autocovariance functions.
-```
-
-### Special case 2: ARMA$(0,q) = $ MA$(q)$
-
-A zero mean $q$-order moving average random process, abbreviated to ARMA(0,q) = MA(q), can be written as follows
-
-$$S_t=\theta_1 e_{t-1}+...+\theta_q e_{t-q}+e_t$$
-
-or
-
-$$S_t=\sum_{i=1}^q \theta_i e_{t-i} + e_t$$
-
-#### First-order MA(1) process
-
-Here we will just focus on the case $q=1$, i.e. MA(1). A **zero-mean first order moving average process** can be written as:
-
-$$S_t = \theta e_{t-1} + e_t, \hspace{10px} -1\leq\theta<1 \hspace{10px} t=2,...,m$$
-
-where $e_t$ is an i.i.d. noise process (white noise), e.g. distributed as $e_t\sim N(0,\sigma_{e}^2)$
-
-**Formulation**
-
-Initializing $S_1=e_1$, with $\mathbb{E}(S_1)=\mathbb{E}(e_1)=0$, $Var(S_1)=\sigma^2$ and $Var(e_i)=\sigma_{e}^2$ for $i=2,\dots,m$. Following this, multiple applications of the above "moving average" formula gives:
-
-$$\begin{align*}S_1&=e_1\\ S_2&=\theta e_1+e_2\\ S_3 &= \theta e_2+e_3\\ &\vdots\\ S_m &= \theta e_{m-1} + e_m\end{align*}$$
-
-of which we still have (in order to impose the *stationarity*):
-
-$$\mathbb{E}(S_t)=0 \hspace{5px}\text{and}\hspace{5px} \mathbb{D}(S_t)=\sigma^2, \hspace{10px} t=1,...,m$$
-
-All the error components, $e_t$, are uncorrelated such that $Cov(e_t,e_{t+\tau})=0$ if $\tau\neq 0$, and the variance is $\sigma_e^2$.
-
-**Autocovariance**
-
-The mean of the process is zero and, therefore:
-
-$$\mathbb{E}(S_t) = \mathbb{E}(\theta e_{t-1}+e_t) =\theta\mathbb{E}(e_{t-1})+\mathbb{E}(e_t) = 0$$
-
-The variance of the process should remain constant as:
-
-$$\mathbb{D}(S_t) = \mathbb{D}(\theta e_{t-1}+e_t) \Leftrightarrow \sigma^2=\theta^2\sigma_e^2+\sigma_e^2, \hspace{10px} t\geq 2$$
-
-resulting in
-
-$$ \sigma_e^2 = \frac{\sigma^2}{1+\theta^2}$$
-
-indicaating that $\sigma_e^2$ is smaller than $\sigma^2$
-
-The autocovariance is
-
-$$c_1=Cov(S_t, S_{t+1}) = \sigma_e^2\theta\\ c_{-1}=Cov(S_t, S_{t-1}) = \sigma_e^2\theta$$
-
-and
-
-$$c_{\tau}=Cov(S_t,S_{t+\tau}) = 0, \hspace{10px}\text{for}\hspace{5px}\tau\geq 2$$
-
-The normalized auto-covariance function (ACF) follows:
-
-$$\rho_{\tau}=\frac{c_{\tau}}{\sigma^2}=\begin{cases}\frac{\theta}{1+\theta^2}, \hspace{5px}&\text{if}\hspace{5px}\tau=1\\ 0, \hspace{5px}&\text{if}\hspace{5px}\tau\neq 1\end{cases}
-$$
-
-**Model structure**
-
-$$\mathbb{E}(S) = \mathbb{E}\begin{bmatrix}S_1\\ S_2\\ \vdots\\ S_m\end{bmatrix} = \begin{bmatrix}0\\ 0\\ \vdots\\ 0\end{bmatrix}, \hspace{15px} \mathbb{D}(S)=\Sigma_{S}=\sigma^2\begin{bmatrix}1&\rho_1&0&\dots&0\\ \rho_1&1&\rho_1& &\\ 0&\rho_1&1&\ddots&0\\ \vdots& &\ddots&\ddots&\rho_1\\ 0&\dots&0&\rho_1&1\end{bmatrix}$$
-
-In summmary:
-
-* Autocovariance function $\implies$ $c_{\tau}=\begin{cases}\frac{\sigma^2\theta}{1+\theta^2}, \hspace{5px}&\text{if}\hspace{5px}\tau=1\\ 0, \hspace{5px}&\text{if}\hspace{5px}\tau>1\end{cases}$
-
-* Normalized auto-covariance function (ACF) $\implies$ $\rho_\tau=\begin{cases}\frac{\theta}{1+\theta^2}, \hspace{5px}&\text{if}\hspace{5px}\tau=1\\ 0, \hspace{5px}&\text{if}\hspace{5px}\tau\neq 1\end{cases}$
-
-* ACF is even, $c_{\tau}=c_{-\tau}=c_{|\tau|}$ and so is $\rho_{\tau}=\rho_{-\tau}=\rho_{|\tau|}$
-
-**Simulated example**
-
-A time series has been simulated to have a standard normal distribution, $e_i \sim \text{N}(0,1)$. This indicates that the entries of $S$ have $S_i \sim \text{N}(0,1+\theta^2)$, $i=1,...,m=1000$, where the variance of the noise process is $\sigma^2 = 1+\theta^2$. In fact, $\sigma_{e_t}=1$, but not the random process MA(1) in total. The time series is shown in {numref}`ma1ex`.
-
-The normalized ACF shows the temporal correlation, $\rho_{\tau}=\frac{\theta}{1+\theta^2}$, if $\tau=1$, and $\rho_{\tau}=0$ if $\tau>1$.
-
-MMMMM should delete the equation in the right panels!
-
-```{figure} ./figs/ma1ex.png
-:name: ma1ex
-:width: 600px
-:align: center
-
-Left: time series for $\beta =0.9$ and $\beta =-0.9$. Right: corresponding normalized autocovariance functions.
-```
-
-## Estimation of coefficients of ARMA process
-
-If the values of $p$ and $q$ of the ARMA($p,q$) process are known, the question is: **how can we estimate the coefficients $\beta_1,...,\beta_p$ and $\theta_1,...,\theta_q$?**
-
-Here, we only elaborate on AR(2) = ARMA(2,0) using best linear unbiased estimation (BLUE) to estimate $\beta_1$ and $\beta_2$. The method can be generalized to estimate the parameters of an ARMA($p,q$) process.
-
-**Example: Parameter estimation of AR(2)**
-
-The AR(2) process is of the form
-
-$$S_t=\beta_1 S_{t-1}+\beta_2 S_{t-2}+e_t$$
-
-In order to esitimate the $\beta_i$ we can set up the following linear model of observation equations (starting from $t=3$):
-
-$$\begin{bmatrix}S_3 \\ S_4 \\ \vdots \\ S_m \end{bmatrix} = \begin{bmatrix}S_2 & S_1 \\S_3 & S_2\\ \vdots & \vdots\\ S_{m-1}&S_{m-2} \end{bmatrix}\begin{bmatrix}\beta_1 \\ \beta_2\end{bmatrix} + \begin{bmatrix}e_{3} \\ e_{4}\\ \vdots \\ e_{m} \end{bmatrix}$$
-
-The BLUE estimator of $\beta=[\beta_1,\beta_2]^T$ is
-
-$$\hat{\beta}=(\mathrm{A}^T\mathrm{A})^{-1}\mathrm{A}^TS$$
-
-
-## Worked example - Single Differencing
-
-On this worked example, we will show that [single differencing](SD) induces an MA(1) process. The original time series is given as:
-
-$$Y=\begin{bmatrix}Y_1\\ Y_2\\ \vdots \\ Y_m\end{bmatrix}, \hspace{10px} \Sigma_{Y}=\sigma^2 I_m$$
-
-We apply single differencing which in this case results in a purely random process:
-
-$$\begin{cases}S_1 = \Delta Y_1 = Y_1\\ S_2=\Delta Y_2 = Y_2 - Y_1\\ S_3=\Delta Y_3 = Y_3-Y_2\\ \quad\vdots \\ S_m= \Delta Y_m = Y_m - Y_{m-1}\end{cases}$$
-
-In matrix notation, this can be written as:
-
-$$\begin{bmatrix} S_1\\ S_2\\ \vdots \\ S_m\end{bmatrix} = \underbrace{\begin{bmatrix}
- 1 & 0 & & \dots & 0\\
- -1 & 1 & 0 & & \\
- 0 & -1 & 1 & \ddots & \\
- \vdots & \ddots &\ddots & \ddots & 0 \\
- 0 & \dots & 0 & -1 & 1
-\end{bmatrix}}_{\mathrm{T}}\begin{bmatrix}Y_1\\ Y_2\\ \vdots \\ Y_m\end{bmatrix} \Longleftrightarrow S = \mathrm{T}Y$$
-
-We apply the [variance propagation law](01_LinearProp):
-
-$$\Sigma_{ S}=\mathrm{T}\Sigma_{Y}\mathrm{T}^T = \mathrm{T}\sigma^2I_m\mathrm{T}^T=\sigma^2\mathrm{TT}^T$$
-
-such that we obtain:
-
-$$\Sigma_{S} = \sigma^2\mathrm{TT}^T = 2\sigma^2\begin{bmatrix}1&-0.5&0&\dots&0\\ -0.5&1&-0.5& &\\ 0&-0.5&1&\ddots&0\\ \vdots& &\ddots&\ddots&-0.5\\ 0&\dots&0&-0.5&1\end{bmatrix}$$
-
-We can see that the structure indeed corresponds with the covariance matrix of an AR(1) process, from which we see that $\rho_1=-0.5$. Now we can find the value of $\theta$:
-
-$$\begin{cases}\rho_1=-0.5=\frac{\theta}{1+\theta^2}\\ S_t = \theta e_{t-1}+e_t\end{cases}\implies \theta=-1 \implies S_t = e_t-e_{t-1}$$
-
-:::{card} Exercise
-
-For the stationary AR(2) process, calculate the ACF at lag 1. In other words, calculate $\rho_1$.
-
-```{admonition} Solution
-:class: tip, dropdown
-
-For the AR($p$) process we know that $\mathbb{E}(S_t)=0$, and $Var(S_t)=\sigma^2$ ($\forall t$), and
-
-$$S_t = \beta_1S_{t-1}+\beta_2S_{t-2}+e_t=
-\begin{bmatrix}\beta_1 & \beta_2 & 1\end{bmatrix}\begin{bmatrix}S_{t-1} \\ S_{t-2} \\ e_t\end{bmatrix}$$
-
-To compute the autocovariance function at lag 1, $c_1$, we need to compute the covariance between $S_{t-1}$ and $S_t$, which is given as
-
-$$
-\begin{align*}
-c_1 &= \mathbb{E}(S_{t-1}S_t)
-= \mathbb{E}\left(S_{t-1}
-(\beta_1 S_{t-1} + \beta_2 S_{t-2} + e_t)
-\right)
-\\
-&= \beta_1 \mathbb{E}(S_{t-1}^2)
-+ \beta_2 \mathbb{E}(S_{t-2}S_{t-1})
-+ \mathbb{E}(S_{t-1}e_t)\\
-&= \beta_1 \sigma^2
-+ \beta_2 c_1
-\end{align*}$$
-
-
-which gives
-
-$$
-\beta_1 \sigma^2 = c_1(1-\beta_2)
-$$
-
-or, because $\rho_1=c_1/\sigma^2$:
-
-$$
-\rho_1=\frac{\beta_1}{1-\beta_2}
-$$
-
-```
-:::
-
-## Brief Summary
-
-The random processes (noise processes) considered here are:
-
-* ARMA($p,q$) process
-
-$$
-S_t = \sum_{i=1}^p \beta_iS_{t-i}+e_t+\sum_{i=1}^q\theta_ie_{t-1}
-$$
-
-* AR($p$) process
-
-$$
-S_t = \sum_{i=1}^p \beta_iS_{t-i}+e_t
-$$
-
-* MA($q$) process
-
-$$
-S_t = e_t+\sum_{i=1}^q\theta_ie_{t-1}
-$$
-
-The parameters of these stochastic processes can be estimated using the least-squares method. This allows then to predict the stochastic process, needed for [forecasting](forecast).
\ No newline at end of file
diff --git a/book/time_series/exercise2.ipynb b/book/time_series/exercise2.ipynb
deleted file mode 100644
index 8b3a7eb6..00000000
--- a/book/time_series/exercise2.ipynb
+++ /dev/null
@@ -1,251 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Stationary time series "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "import matplotlib.pyplot as plt\n",
- "from statsmodels.tsa.stattools import adfuller \n",
- "\n",
- "%matplotlib inline"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**Introduction:** \n",
- "\n",
- "[In the previous exercise](https://mude.citg.tudelft.nl/book/time_series/exercise1.html#) we created and plotted the $Y_4$ time series, now we check its stationarity. Remember that we need to ensure *stationarity* of the time series data-set for *forecasting and predictive models*. \n",
- "In this excercise, you can test the stationarity of the time series using transformation and visual inspection and the Augmented Dickey-Fuller (ADF) test (The ADF test is optional). \n",
- "\n",
- "**Background knowledge:** \n",
- "\n",
- "The ADF test can be performed by using two hypotheses (Null Hypothesis and Alternative Hypothesis):\n",
- "\n",
- "1. Null Hypothesis $H_o$: we assume that the time series is not stationary. \n",
- "2. Althernative Hypothesis $H_a$: we assume that the time series is stationary. \n",
- "\n",
- "If the test statistic is smaller than the critical value, the null hypothesis is rejected and therefore the time series is stationary. In this case the the p-value becomes very small. In python, there is a package: **statsmodels** which has the function of **adfuller method**. We use the adfuller()
function to test the stationarity of the data-set. Regarding the interpretation of the adfuller function, the first output is the test-statistic, the second one is the p-value, etc.\n",
- "\n",
- "**Excercise:** \n",
- "\n",
- "We take the time series and the noise from the Excercise 1 $Y_2$, $Y_4$ and $\\epsilon_t$. We also use the single differencing method to make the time series stationary and plot the results. Later we will also use the least squares method (best linear unbiased estimation - BLUE) to de-trend the data. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**Note:**\n",
- "\n",
- "You don't need to focus on the next cell, it contains the code included in the [Time series components exercise](https://mude.citg.tudelft.nl/book/time_series/exercise1.html#) for creating the time series."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "np.random.seed(0) # For reproducibility\n",
- "\n",
- "# create observations\n",
- "time = np.arange(501) \n",
- "m = len(time)\n",
- "y_0 = 1 \n",
- "r = 0.02 \n",
- "y1 = y_0 + r*time \n",
- "\n",
- "# introduce a seasonality\n",
- "omega = 2 * np.pi/100 \n",
- "A = 1 \n",
- "phi_0 = 0.2*np.pi\n",
- "y2 = y1 + A*np.sin(omega * time + phi_0) \n",
- "\n",
- "# introduce offset\n",
- "t_k = 300 \n",
- "O_k = 5 \n",
- "y3 = y2.copy() \n",
- "y3[t_k:] = y3[t_k:] + O_k\n",
- "\n",
- "# introduce random error\n",
- "mean = 0 \n",
- "sigma = 0.5 \n",
- "et = np.random.normal(loc = mean, scale = sigma, size = m) \n",
- "y4 = y3 + et "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We start applying single differencing to check whether the time series becomes stationary. We do it first for y2
, which just contains the observations and the seasonality."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Text(0.5, 1.0, 'Single Differencing')"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAGHCAYAAABCj89sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACd3UlEQVR4nO2dd3hb5fXHv1fbS/LedmyHDGeDA8GBEFYMBAgUaCnQlBZCScMKKb+WQCkJtKSlNKSUkRYCtIWWtKwCNTRmZEAGIYMsx1nee1u2rH1/f0j3St6yfXWHdD7Pw9NGvrr3lY7e8573nPOew7Asy4IgCIIgCIIgCB6V1AMgCIIgCIIgCLlBRjJBEARBEARB9IOMZIIgCIIgCILoBxnJBEEQBEEQBNEPMpIJgiAIgiAIoh9kJBMEQRAEQRBEP8hIJgiCIAiCIIh+kJFMEARBEARBEP0gI5kgCIIgCIIg+kFGMkEQYcWePXvwne98B9nZ2dDr9UhJSUFhYSF+9rOf9bnu4osvxsUXXxz08TAMgzVr1gh2v4svvhgMw4BhGKhUKsTExOCss87Cd7/7Xbz99ttwu90D3pOTk4Mf/ehHfV47cOAAFi5cCJPJBIZhsGHDBgDAZ599hrlz5yIqKgoMw+D9998XbOxSIJacCYJQHhqpB0AQBCEW//3vf7FkyRJcfPHFePrpp5GWlob6+np88803eOutt/CHP/yBv/bFF1+UcKTjIy8vD2+++SYAoKenB+Xl5Xj//ffx3e9+FwsWLMCHH34Ik8nEX//ee+/BaDT2uccdd9yBnp4evPXWW4iLi0NOTg5YlsX3vvc9TJ48GR988AGioqIwZcoUUT+b0ChZzgRBBBeGZVlW6kEQBEGIwcKFC1FbW4vjx49Do+nrI3C73VCpxA+uMQyDxx9/XDBv8sUXX4yWlhYcOXJkwN9ee+013HHHHfje976HzZs3D3sfrVaLu+66q48RWVtbi8zMTPzud7/Dz3/+c0HG63A4wDDMAHkQBEFIDaVbEAQRNrS2tiIxMXFQg6y/gdw/DF9RUQGGYfDMM89g/fr1yM3NRXR0NAoLC7F79+4B93v55ZcxefJk6PV6TJs2Df/4xz/wox/9CDk5OSOOs6GhAXfffTcyMzOh0+mQm5uLtWvXwul0jvoz+/PjH/8Yixcvxr///W9UVlbyr/unW7z++utgGAZOpxMvvfQSn7qxZs0aZGZmAgB+8YtfgGGYPp/l5MmTuPXWW5GcnAy9Xo/8/Hy88MILfZ6/detWMAyDv//97/jZz36GjIwM6PV6nDp1CgDw6aef4rLLLoPRaERkZCQuuOACfPbZZ33usWbNGjAMg6NHj+KWW26ByWRCSkoK7rjjDnR2dva51u12409/+hPmzJmDiIgIxMbG4vzzz8cHH3zAXyOlnAmCkDdkJBMEETYUFhZiz549uP/++7Fnzx44HI5R3+OFF15ASUkJNmzYgDfffBM9PT1YvHhxHwPtL3/5C37yk59g1qxZePfdd/HLX/4Sa9euxdatW0e8f0NDA8477zz873//w69+9St8/PHHuPPOO7Fu3Trcddddox5vf5YsWQKWZbFjx45B/3711Vdj165dAICbbroJu3btwq5du7Bs2TK8++67AID77rsPu3btwnvvvQcAOHbsGM4991wcOXIEf/jDH/DRRx/h6quvxv3334+1a9cOeMbq1atRVVWFjRs34sMPP0RycjLeeOMNFBUVwWg04q9//Sv+9a9/IT4+HldcccUAQxkAbrzxRkyePBnvvPMOHn74YfzjH//Agw8+2OeaH/3oR3jggQdw7rnnYvPmzXjrrbewZMkSVFRUjPg9BVvOBEEoAJYgCCJMaGlpYS+88EIWAAuA1Wq17Pz589l169axZrO5z7ULFy5kFy5cyP+7vLycBcDOnDmTdTqd/Otff/01C4D95z//ybIsy7pcLjY1NZWdN29en/tVVlayWq2WnTBhQp/XAbCPP/44/++7776bjY6OZisrK/tc98wzz7AA2KNHjw77GRcuXMhOnz59yL9//PHHLAD2d7/7Hf/ahAkT2Ntvv33AuO65554+r3Hfwe9///s+r19xxRVsZmYm29nZ2ef1e++9lzUYDGxbWxvLsiz7xRdfsADYiy66qM91PT09bHx8PHvttdf2ed3lcrGzZ89mzzvvPP61xx9/nAXAPv30032uXbFiBWswGFi3282yLMtu376dBcA++uijQ34XLCuenAmCUB7kSSYIImxISEjAjh07sHfvXvz2t7/FddddhxMnTmD16tWYOXMmWlpaRrzH1VdfDbVazf971qxZAMCnL5SVlaGhoQHf+973+rwvOzsbF1xwwYj3/+ijj3DJJZcgPT0dTqeT/++qq64CAGzbti3gzzsYrMDHUKxWKz777DN85zvfQWRkZJ8xL168GFardUCawo033tjn3zt37kRbWxtuv/32Pu93u9248sorsXfvXvT09PR5z5IlS/r8e9asWbBarWhqagIAfPzxxwCAe+65Z0yfK9hyJghC/tBJCYIgwo65c+di7ty5ADwHx37xi1/g2WefxdNPP42nn3562PcmJCT0+bderwcA9Pb2AvDkPQNASkrKgPempKSgvLx82Ps3Njbiww8/hFarHfTvgRjyw8EZeenp6eO6D0drayucTif+9Kc/4U9/+tOg1/Qfc1paWp9/NzY2AvCkdwxFW1sboqKi+H+PJIfm5mao1WqkpqYG+En6Emw5EwQhf8hIJggirNFqtXj88cfx7LPPDloRYrRwxhVn+PnT0NAw4vsTExMxa9Ys/OY3vxn07+M1bj/44AMwDIOLLrpoXPfhiIuLg1qtxtKlS4f02ubm5vb5N8Mwff6dmJgIAPjTn/6E888/f9B7DGaMDkdSUhJcLhcaGhoGGOVCMF45EwQhf8hIJggibKivrx/UYCotLQUgjHd1ypQpSE1Nxb/+9S+sWrWKf72qqgo7d+4c8RnXXHMNiouLMXHiRMTFxY17PP689tpr+Pjjj3HrrbciOztbkHtGRkbikksuwYEDBzBr1izodLpR3+OCCy5AbGwsjh07hnvvvVeQcV111VVYt24dXnrpJTzxxBOC3NOf8cqZIAj5Q0YyQRBhwxVXXIHMzExce+21mDp1KtxuNw4ePIg//OEPiI6OxgMPPDDuZ6hUKqxduxZ33303brrpJtxxxx3o6OjA2rVrkZaWNmIt5ieeeAIlJSWYP38+7r//fkyZMgVWqxUVFRUoLi7Gxo0b+VJsQ9Hb28vnAff29uLMmTN4//338dFHH2HhwoXYuHHjuD+nP3/84x9x4YUXYsGCBfjpT3+KnJwcmM1mnDp1Ch9++CE+//zzYd8fHR2NP/3pT7j99tvR1taGm266CcnJyWhubsa3336L5uZmvPTSS6Ma04IFC7B06VL8+te/RmNjI6655hro9XocOHAAkZGRuO+++8bzkcctZ4Ig5A8ZyQRBhA2//OUv8Z///AfPPvss6uvrYbPZkJaWhssvvxyrV69Gfn6+IM/5yU9+AoZh8PTTT+M73/kOcnJy8PDDD+M///kPqqqqhn1vWloavvnmGzz55JP4/e9/j5qaGsTExCA3NxdXXnllQN7lM2fOoLCwEAAQFRWFlJQUnHPOOfj3v/+NG264QXADbtq0adi/fz+efPJJ/PKXv0RTUxNiY2MxadIkLF68OKB7/OAHP0B2djaefvpp3H333TCbzUhOTsacOXMGtMwOlNdffx3nnHMONm3ahNdffx0RERGYNm0aHnnkkTHdrz/jkTNBEPKHOu4RBEGIQEdHByZPnozrr78ef/nLX6QeDhEkSM4EETqQJ5kgCEJgGhoa8Jvf/AaXXHIJEhISUFlZiWeffRZms1mQlA5CHpCcCSK0ISOZIAhCYPR6PSoqKrBixQq0tbUhMjIS559/PjZu3Ijp06dLPTxCIEjOBBHaULoFQRAEQRAEQfSDjt8SBEEQBEEQRD/ISCYIgiAIgiCIfpCRTBAEQRAEQRD9oIN7AuJ2u1FXV4eYmJgBbVcJgiAIgiAI6WFZFmazGenp6cPWjScjWUDq6uqQlZUl9TAIgiAIgiCIEaiurh62gykZyQISExMDwPOlG43GoD/P4XBgy5YtKCoqglarDfrzCOEhGSofkqGyIfkpH5Kh8hFbhl1dXcjKyuLttqEgI1lAuBQLo9EompEcGRkJo9FIikGhkAyVD8lQ2ZD8lA/JUPlIJcORUmPp4B5BEARBEARB9IOMZIIgCIIgCILoBxnJBEEQBEEQBNEPMpIJgiAIgiAIoh9kJBMEQRAEQRBEP8hIJgiCIAiCIIh+kJFMEARBEARBEP0gI5kgCIIgCIIg+kFGMkEQBEEQBEH0gzruEYSAWB0u7DrdCofLjbk58YiP0kk9JGKUNJmt2F/ZgQidGoV5CdBpyJegNMoazChv6UaqKQKzM00jdtUi5IXLzWJPeSu6eh2Ynm5CVnyk1EMiRkm3zYndp1sBAPPy4hFjUGYnRDKSCUIgPittxOp3D6PJbAMAROrUePDyybjrojyJR0YEAsuy2PDpSby07TTsTjcAICM2Ar//7izMn5go8eiIQOiyOvCzf32LkmON/Gvn5cbjue+fjVSTQcKREYFyrK4LD7x1ACebugEAahWDW8/Lxq+unQatmjasSuDd/TV44qNj6LA4AABGgwa/vGYavjc3S+KRjR76xRGEAHxypAF3/30fmsw2pBj1yEuMgsXuwm+KS/FsyQmph0cEwNoPj+GPn52E3enG5JRoJEbrUNvRix+/thdfnWqRenjECHTbnFj6yh6UHGuEigFmZ8VCp1Hh6/I23PyXXWjqsko9RGIEjtV14ZaXd+NkUzdiDBpMTzfC5Wbx992VuP+fB+B2s1IPkRiBt76uwqp/fYsOiwOZcRHIio9Al9WJn799CH/fXSn18EYNGckEMU5q2i146N/fwulm8Z2zM7Dj55fis58txOqrpgIA/vjZSew42SzxKInh+PDbOry+swIMA6y7YSb+t/IifPmLS3F5fgpsTjfu/+cBtHTbpB4mMQxPfngM39Z0Ii5Siw/uvRD/uecCfPrgQmTFR6Cy1YKH3j4EliUjS6702l249x/70dnrwDnZsdjx80vw3/sX4OUfzoVOrcLHRxrw6lflUg+TGIZjdV147D9HAAB3XJCLbf93CbY+dAnu9kZT135wFIdrOqUc4qhRrJH84osvIjc3FwaDAQUFBdixY8ew12/btg0FBQUwGAzIy8vDxo0bB1yzYcMGTJkyBREREcjKysKDDz4Iq5W8D8TQsCyL1e8eRrfNiYIJcXjmu7Oh06jAMAzuXjgRPyycAAD4+duHYLE7JR4tMRjtPXZesd93yVm45bxsMAwDg1aNF247G1NSYtDaY8fjHxyVeKTEUOw42YzN31SDYYCXflCAGRkmAEB2QiRe+9F50GtU2H6iGf/6plrikRJD8eynJ3CmpQcpRj1e/dG5iI30nOdYNC0Fa5ZMBwA8/b8ylLf0SDlMYghcbhYP/ftbOFwsFk1LwWPX5EOtYqBWMXj4qqlYPDMVTu81Tpdb6uEGjCKN5M2bN2PlypV49NFHceDAASxYsABXXXUVqqqqBr2+vLwcixcvxoIFC3DgwAE88sgjuP/++/HOO+/w17z55pt4+OGH8fjjj6O0tBSbNm3C5s2bsXr1arE+FqFAdp5uxY6TLdCpVXjmu7OhVvU9IPTwVVORGReB+k4r/rZLeaGmcGDj9tPosDgwNTUG9146qc/f9Bo1/vC92WAY4L+H6nGkVllekHCAZVn89uPjAIDbC3Nwfl5Cn7+flRyNVYsmAwCeLTkJq8Ml+hiJ4anr6MXrX1UA8ERyOAOZ45bzsrBgUiLsTjc2fErpa3Lko0N1OFbfBaNBg6e+M7PPYVmGYfDr62ciLlKLskYz3j9YJ+FIR4cijeT169fjzjvvxLJly5Cfn48NGzYgKysLL7300qDXb9y4EdnZ2diwYQPy8/OxbNky3HHHHXjmmWf4a3bt2oULLrgAt956K3JyclBUVIRbbrkF33zzjVgfi1AYLMviD1vKAAC3zstGbmLUgGsidRo8eLlngd647TTMVoeoYySGp9lsw992ejYv/3fFlEErWczIMOG62ekAgPWUXy47/ne0AUfruhClU+P+yyYNes3t83OQZjKgocuKf349uDOFkI7nvzgFu8uNebnxuGRK8oC/MwyDX1zpSV/74Ns6nGg0iz1EYhicLjc2fHoSAHD3wolIitEPuCY+SoflCycCADZ8egIOhXiTFVfdwm63Y9++fXj44Yf7vF5UVISdO3cO+p5du3ahqKioz2tXXHEFNm3aBIfDAa1WiwsvvBBvvPEGvv76a5x33nk4c+YMiouLcfvttw85FpvNBpvNl6fY1dUFAHA4HHA4gm8Mcc8Q41nEQA5Wd2B/VQd0GhXuunDCkHK4ekYynv88EuWtFrz9TRV+MC+b/xvJUFre2FWOXocLszKMWDAxbkg53HNxLj74tg6fH29CWV0H8pJ8GyKSobS8suMMAOCHhdmI0TGDykENYPlFuXj8w1Js+rIct87NgMob9SH5SUu7xY539tUAAO6/NA9O5+BpaVOSI7EoPxklpU3YtOM0fn3ddP5vJENp+bS0CeUtPYiN0OLWczOGlMMtczPwl+1nUNPei48P1eKqGan838SWYaDPUZyR3NLSApfLhZSUlD6vp6SkoKGhYdD3NDQ0DHq90+lES0sL0tLS8P3vfx/Nzc248MILwbIsnE4nfvrTnw4wxv1Zt24d1q5dO+D1LVu2IDJSvLqOJSUloj2L8PHGSRUAFebEOfHNjs+GvfacGAblrWps/KwUcS1H0L9sK8lQfFws8Pp+NQAGsyPa8fHHHw97/bRYFY60q/DUv3bghtyBXhCSofjU9gDfVGqgYlikdZ9EcfHJIa+NdAGRajVq2nvxh39+gulxfQ/xkfyk4fM6BjanGplRLJqP7kbxsaGvnaoCSqDBe/trMIepRGQ/C4ZkKA0vHfOshQVxNmz/bMuw1xbEqrClR4XnPj4Itko6PWqxWAK6TnFGMkf/4vAsyw5bMH6w6/1f37p1K37zm9/gxRdfxLx583Dq1Ck88MADSEtLw2OPPTboPVevXo1Vq1bx/+7q6kJWVhaKiopgNBrH9LlGg8PhQElJCRYtWgStVpmFupVKh8WB/9u7DYAbv7ihELMyTcNev8DqwMe/347GXhcSp52PebnxAEiGUlJyrAmduw8iPkqLX9x2OfQjNA2JntSCO/+2H/s7dHh+0UIYtGoAJEMpefzDYwBqcMW0VNxy/ewRry/VlOHVnZU4yabg/xafA4DkJyUsy+IPG74E0IufXj4dV8/NHPH6/z2/CyeaumFJnoGbzvdE5UiG0lHZZsHxXV+CYYBHv38RsuKGdxCe3WnFp3/YjlNdKkyeeyHOSo4GIL4Mucj/SCjOSE5MTIRarR7gNW5qahrgLeZITU0d9HqNRoOEBM8hj8ceewxLly7FsmXLAAAzZ85ET08PfvKTn+DRRx+FSjVwAdXr9dDrB+beaLVaUSeq2M8jgJLj9bA73chPM6Igd+RGE/FaLa6dlY7N31Tjv0caceHkvr9VkqH4fHjYoxO+W5CF6IiB87g/l0xNRUZsBGo7erHjdDsWz0zr83eSobjYnW4UH/E0Dbn1/AkBffe3Febg1Z2V2HGyFWY726cjJslPfPZXtaOqrReROjW+U5AFrXZkk+TWedlY8+ExfHioAXcumNjnbyRD8Sk+0gQAuPCsROQlD+8sAoDsRC0umZKMz443ofhoE36WEdfn72LJMNBnKO7gnk6nQ0FBwQCXfElJCebPnz/oewoLCwdcv2XLFsydO5f/oiwWywBDWK1Wg2VZqq1JDOA/B2sBANfNSQ/4PUu81xYfbuA7uhHS0GV14LPjHuW+JEAZqlQMrvUe4OPkT0jHjpPN6LA4kBitD7gj4sSkaExPN8LpZlF8uD7IIyRG4gNvlYNF01IQqQvMZ3f1rHSoGM+ZkMpWKgcnJSzL+q2FGQG/j9O5/zlYJ3v7SnFGMgCsWrUKr7zyCl599VWUlpbiwQcfRFVVFZYvXw7Akwbxwx/+kL9++fLlqKysxKpVq1BaWopXX30VmzZtwkMPPcRfc+211+Kll17CW2+9hfLycpSUlOCxxx7DkiVLoFarRf+MhHxp6LTi64o2AOCNpkA4Py8BSTF6dPY6sP0ENReRkpKjjbA73ZiYFIVpaYGnRi3xyvuLsmZ0UaUSSfnwW4+Bdc2stAGlF4eDk+EH3yqnDFUo4nKz+OiQZ6OyZBR6NCnGtyn6kGQoKaX1Zpxu7oFOo8IV0weP5A/G5fkpMGhVqGqz4FuZNxdRpJF88803Y8OGDXjiiScwZ84cbN++HcXFxZgwwdO4ob6+vk/N5NzcXBQXF2Pr1q2YM2cOnnzySTz33HO48cYb+Wt++ctf4mc/+xl++ctfYtq0abjzzjtxxRVX4M9//rPon4+QNyXHGsCywDnZsciIjQj4fWoVg6u9Ifr/HR38kCkhDp94v/9rZqUPe5ahP/lpMZiYFAW7042tZbTRkQq7043PSj2RgGtmpY1wdV+u8Rpkeyva0EpdFCVjf1U7WrptMBo0WDApaVTvvXY2p0cbgzE0IkA4PXrx5CTEGAJPkYjSa3BZvseolvtaqEgjGQBWrFiBiooK2Gw27Nu3DxdddBH/t9dffx1bt27tc/3ChQuxf/9+2Gw2lJeX815nDo1Gg8cffxynTp1Cb28vqqqq8MILLyA2NlaET0MoiU+9i/OiaakjXDmQRdM8iuGLsia43fIOM4UqVocLX55sAeCTR6AwDIPLve/5rJQWaKnYW9EGs82JxGgdzs6OG/kNfmTERmBamhEs64kIENLwqXf+XDI1edD65MNx6dQUMAxwuLYTjV3UFVcqOB1YNH30a2GRQvSoYo1kgpCCHpsTu063AgAuzx9Y9H4kzs2JR4xeg5ZuOw7WdAg8OiIQdp1uRa/DhTSTAdPTR1+F5nKvB2RrWbOi2quGEryBNSV5VKkWHNzclfsCHcpwkQDOozgakmL0mJMV2+c+hLjUd/biaF0XGAa4ZMroIgEAcPFkz9w90diN6rbAyrFJARnJBDEKvjzVArvLjez4SL50zWjQaVS4yKtQPiflLgmfHfcYRpdOTR5VqgXHOdlxiIvUorPXgX2V7UIPjwiAz4+P3cDyf9/2E810iFYCqlotONXUDY2KwcLJozewAN9mlTY60sDNwXOy45AQPXJ1oP6YIrWYO8ETBZKzDMlIJohRsOOkJzx7yZSkMRlYnvd6vFg7TrUINi4icLhUi8Ha3waCWsXgIu/C/iXJUHSqWi2obLVAo2Jw4aTAqlr0Z2aGCYnROvTYXRTRkYAdpzx69JwJcTBFjK3c18VeZ8OuM62KaXEcSuw4wenRsW1yAE+qDQDsOClfPUpGMkGMgq9OeVItLhzlQRN/LjzLs7AfrulAZy9VSBCT6jYLKlotUKsYnD8xYcz34WRIRrL4fHXa852fkx2HaP3YSv2rVAxfIWHn6TbBxkYExlfeebPgrLFtcgAgP9WIhCgdLHaX7CskhBouN4ud3nkoxFq4W8YbHTKSCSJAatotKG/pgVrFYF5e/Jjvk2oy4KzkaLhZYPcZWqDFhFucz86KHbOBBQAXeJX7t9Ud6KKNjqhwkYALxmFgAb4F+ivvGQNCHFxulnc2XDDGSADg3ehwMjxFMhSTw7Wd6LI6EWPQYGbGyA1EhmJamhFxkVr02F04JNONDhnJBBEgnIE1O9ME4yjK3QwGLdDSwHl+x2tgpcdGIC8pyrPRKaeNjli4+3iwxh4JAHwG2qGaTvQ6xz00IkCO1nWis9eBGL0Gs8ZhYAHAhWd5fgOkR8WFWwvnT0wY08FZDv+IjlxlSEYyQQTIHq8xFGh3r+Eo9Ib6v6GDX6LBsqyfDMdnYAHABd7fwTeVHeO+FxEYJ5u60W5xIFKnxqzM2HHdKyM2AjkJkXCzQLl57As9MTq+9s7B83LjoVGPzwThdPHh2i7YXeMeGhEgnB4tzBu/Hp3v3eh8XSHPtZCMZIIIkP1eg3Zuzujqsg5GgfdU78mmHljIiyUKNe29aDbboFUzmO0tHzUeuN/Bvip5KvdQhKsmMicrFtpxGlgAUDDBkzZFRrJ47OP16NhT1jgy4yKQHKOH082imjpUi4LbzeKAgDKcl+u5x8HqTsix0AwZyQQRAM1mGypaLWAYjLp5wWAkRuuRkxAJAKigBVoUuMV5eroJBu34W82f4/0dHKszkxdLJL6p9HiwuE3meOHuU24W5HbECLAsy0fPhJAhwzD8fc6QHhWFE01mmG1OROrUmJoaM+77TUyKRnyUDjanW5YbHTKSCSIA9nu9hZOTY8Zcsqg/5MUSF87AmiuQgZUZF4EUo8eLVSVD5R6K7BfQwAJ80YDKboYaw4iAfzRnVub48pE5uN8CORvEgXM2nJ0dO+50GcCz0eF08uku+cmQjGSCCABOMZwj0OIMkBdLbPZ5c4eFMrD8vVi00Qk+XDQHECaaAwBnJUUjxqCB3c3geEO3IPckhobbqAoVzQHQZw6yLCvIPYmh2efNHS4QaA4Cnvx0gIxkglAs+wT2YPnfi7xYwcdsdaCsoQuAsDLkUi7IixV8+GhOSrRg0RyVisHZWR6P5v7qDkHuSQxNMPTo9HQT9BoVepwMylvk2944VODOYAjpMDovNx46jQrjKJQRNMhIJogRsDldOOyt4ShUqB4AJiX7vFhljeTFCiYHqzvgZoGs+AgkGw2C3Zc7uEJerODjS7UY/2Ehf7iNzv6qDkHvSwyEi+YIqUd1GhVmZhgB0EYn2DSbbagU8GwOx/R0E/Y/cgnumio/ZxEZyQQxAkdqO2F3uZEQpcME72E7IfD3Yu2jBTqo8B4sARU74CmGT14scRDywJc/52R7Pck0B4OKfzRHSC8kAJyTHQuAZBhsOD0q5NkcAFCrGOgFSr8RGjKSCWIE/PORGUbYeNDZ3lJkpNyDSzDCvEBfLxZtdIKHfzRHaBnOyjBBBRb1nVbUdfQKem/CBxfN8Rx4FS6aAwDnkB4Vhf1BSLWQO2QkK5wPKlW4dP0OtHbbpB5KyMLX9QyCYiiYEAuAlHswcblZHPB+v0KH6gGfd5pkGDyO1Hbx0ZwcAaM5ABCl1yA9yvP/91Fzn6ARTD16tteTfLq5Bx0Wu+D3JzwEU4ZyhYxkhXO0nUF1ey+2n2yWeighC9dTfo4ADSj6MzPDBMbrxWqhjU5QKG/pRrfNiQitGlMEqOvZnznelJkjtZ2C35vwcKimA4BnDgodzQGAnGhPPvlhkmHQCKYejY/SIdFAMgwmTpeb13FzvJuScICMZIXDHRU6Utsl6ThCldZuG+o7rQCA6RnC1PX0J1qvQZI38ni0jmQYDLjvdVq6EeogHJ+enu5JtzjV3AOrg7qKBANOhjOCMAcBIDOK9T6HDKxgwX23MwWqj9yfLF6GpEeDwZmWHticbkTp1MhNiJJ6OKJBRrLC4Q7Uk3IPDpzCzU2MQrReE5RncAs0eSKDA/e9csas0KQa9YjSsHC6WZxopKLXwSDYMvTNwS6qUhIEmsxWNHbZwDDA1NTgyDCD9GhQ4b7XaelGqORYqy1IkJGscLiCKUdru+B2k3IXmiN1wV2cAfJiBRsuyjIjPTgeLIZh+hhZhLBYHS6cbPKUSAyWJzktEtCqGXT2OlDTTof3hIZzNuQlRiEqSM6GrKi+zyKEhdNt04OkR+UKGckKh3N6mG1OVLdTCSqhCXaYFwAyo/s+ixAOlmX5zce0oG50PP9LGx3hOdFohsvNIj5KhzSTsFURODQqT91ygOZhMDgmhh71blTLW3pgtjqC9pxwhdNtwZShHCEjWeH4+45JuQvP0SCHeQEgM9IjxcpWCzp7SbkLSU17L7qsTmjVDCanCH9oj4P3JNMcFByfB8sYlEN7HNPSPHOcNjrCE+x0GQCI1npSnwCgtJ7SnoTE7Wb5jU4wZShHyEhWOP7pc5SLJSxmqwMVrR7vfDBDTFFaICPW4yE7RkaWoHAGz+SUGOg0wVN3nJF8vL6LWowLjC/lKbgerOnpnk0UORuEh5NhsFKeODgDjjY6wlLVZoHZ5oROo8JZ3ohLuEBGssLx9ySTF0tYOIM1IzYC8VG6oD6LvFjBIdj5yByJBiBKp4bN6cbp5p6gPivc8KU8BdeDNd07B8nZICydFgeq2zx53kHf6PAypLVQSLg5mJ8aA606vMzG8Pq0IUifdIvaTjqZLSD+pcOCzbQ08mIFA27TMT3IBpaKAfJ5GZKRJRQOlxul9eIcGJqSGg2GAZrMNjSZrUF9VjhxtN4zHzLjImCKFK6V8WBMozkYFI7w5zrCKx8ZICNZ8fjbxK09djR2UUMKoRArRAj4woTkxRKWI3XincieRl4swTnd3A27041ovQYT4oXttNefSJ0GE5Po8J7QHBUpmgP4HBonm7qpZrmAcOtSsKM5coSMZIXD2chatedAC+2gheNorXgHFTgPyOnmbvTaSbkLQVOXFc1mWx8vbzDhclqP0BwUDG4OTksTpzYrn9NKm1XBOCpCGU2OVKMe8VE6uNwsyhro8J4QsKz/oT3yJBMKg/Mkc+12yYslDFaHC6eaPbVZgx2qB4DkGD0So/Vws0BpA8lQCI56w/R5SdGI1AWnNqs/nCe5tI4aUgiFmClPgM/bSZ5k4eC+SzH0KMMwfof3SIZC0NhlQ2uPHWoVg6mpwXc2yA0ykhUOtxRzCzR1/BKG083dcLlZxEZqkWoMTm1WfxiG4b2dJ8gDIgicJ0ksxZ6XGAWNioHZ5kRdJ+W0CkFZo8+TLAZTvXOwjPSoINicLpxp8RxkzRdJhvm0FgrK8QZf11mDVi3xaMSHjGSFwzmsuFafpBiE4WSjx4s8OSUmqLVZ/eHq+J7wPpsYH9xcmBLE+sj+6DQq5CVF9Xk2MT64uTBZpI0O91upbLVQTqsAlLf0wOVmEWPQiOJsAPz1KM1BIeDWQrH0qNwgI1nhcJ5kzltW3tIDm5OU+3jhPEmTU8SrCTmFlLugcN+jWAYW4LdAUzRg3LT12NFs9hxEniRSbdakGD1MEVq43CzOUCm/ccNFc8R1Nnh+K6RHhYFbCyeJuBbKCTKSFQ5nJKfHRiBGr4HTzaK8hZT7eOGMHDF3z5wxR6He8eNys5J4QLhnkQzHD2fkZMVHIEof/JxywJP2RJtV4eA3qiLOwbOSPaX8WrrtaOmmak/jReyInNwgI1nhcOkWahXjM7LIizVuyiRQ7py3rNlsQ3uPXbTnhiJVbRbYnG7oNSpkBbl0mD+TyMASDN7AShZ3cZ6c6pmHtNEZP2UN3EZVPC9kpE6DbO+cp3k4Ptx+zgYxI3JygoxkheN/hp4z6E5STuu46LE5UdPu6RAlppEcpdcgMy4CACn38XLCL0SoFqF0GAdXZeZUk+fgJzF2pEiXAXwes5M0B8fNySZpZEhroTDUtPei1+GCTqMKep1yuaJYI/nFF19Ebm4uDAYDCgoKsGPHjmGv37ZtGwoKCmAwGJCXl4eNGzcOuKajowP33HMP0tLSYDAYkJ+fj+Li4mB9BEHgPMkqFcPnYpEHZHycbPIo1qQYPeKC3I66PxTqFYYTDeJHAgAgOz4Seo0KVocb1W0WUZ8dapxokObA0CRKmREEi92JKu8cEHse0looDNz3NzEpGpowa0fNochPvXnzZqxcuRKPPvooDhw4gAULFuCqq65CVVXVoNeXl5dj8eLFWLBgAQ4cOIBHHnkE999/P9555x3+GrvdjkWLFqGiogJvv/02ysrK8PLLLyMjI0OsjzUm3N7/VTFkYAmFFPnIHJSXLAxlEuXRqVUMf8CFZDh2WJaVJOXJ/3nVbb3osTlFfXYocaqpGywLJETpkBitF/XZdIBWGHz5yOF5aA9QqJG8fv163HnnnVi2bBny8/OxYcMGZGVl4aWXXhr0+o0bNyI7OxsbNmxAfn4+li1bhjvuuAPPPPMMf82rr76KtrY2vP/++7jgggswYcIEXHjhhZg9e7ZYH2tMcAFdFePLSa5qs1DXtnEg1eIM+G10GihMOB6kCtUDtEALQZPZhs5eB9Qqhi+rJxbxUTokxXiMOi6qRIyeMomiOYAv7ams0UyNfcYBL8MwzUcGAHGODAuI3W7Hvn378PDDD/d5vaioCDt37hz0Pbt27UJRUVGf16644gps2rQJDocDWq0WH3zwAQoLC3HPPffgP//5D5KSknDrrbfiF7/4BdTqwQto22w22Gy+07NdXZ6i2w6HAw6HYzwfMyAcDgefbuFyOhEfo0d8lBZtPQ4cr+sIyz7rQlDmLZ5+VlJE0OXI3Z/739wETy3RE41m2O120comhRJ2p5sv35UXbxBdhhMTPbl7xxu6RNEDocix2g4AwIT4CKjhhsPhHv4N46C//ABgUnIUms02lNZ1YHqquEZ6qHC83tOO+qzkKNHnYJZJ72nsY3Wipq1btBrNocYJ71o4MTFSdBkGm0CfozgjuaWlBS6XCykpKX1eT0lJQUNDw6DvaWhoGPR6p9OJlpYWpKWl4cyZM/j8889x2223obi4GCdPnsQ999wDp9OJX/3qV4Ped926dVi7du2A17ds2YLISLGS3D0G/Oeff4YYLRCvVqENKrxd8hWqkmkHPRYOV6oBMGg+dQjFjYdEeWZJSQkAwOEGGKjR0evAW//5GCZxU6JDgnoL4HRroFezOPDVFzgo0j6Dk2FnOwNAjf2n6lFcXCPOw0OML+o832GMu1u0cyGc/ABA26MCoML/dh9GZMO3ojw/1NhZ6vkObU3lKC4+I8oz/WWYoFejsZfBmx99gfxYWgtHi8sNnGzyrIW1R/ei+LQ4z/WXYTCxWAI7M6I4I5mjv4eNZdlhvW6DXe//utvtRnJyMv7yl79ArVajoKAAdXV1+P3vfz+kkbx69WqsWrWK/3dXVxeysrJQVFQEozH4Xly73Q5211YAwKLLL0d8lA7fuEtxak81DKl5WHzllKCPIdTosDjQuesLAMDS64oQYwjuFHE4HCgpKcGiRYug1WoBAC+e/hJnWizImjEPF56VENTnhyL/PdwAfHsI09JjcfXV84L+vP4ynNPRi78c34FmmwqXFy2CTqPIrDZJ2fHeUaCyFhfNPguLLz0rqM8abA52f1ODbf85BmdUEhYvLgjq80OVdUe3AbDhhkvPR8GEuKA+azAZftL1LT4+2ojYCflYfEFOUJ8fipxq6oZrz05E6tS47fpFUAW5StBgMgwmXOR/JBRnJCcmJkKtVg/wGjc1NQ3wFnOkpqYOer1Go0FCgscISUtLg1ar7ZNakZ+fj4aGBtjtduh0A116er0eev3AAwlarVYUIbv9SkzpvM+cmm4CUI1TzRZRxhBqlLd5crAyYiMQHxMh2nP9fzNTUo0402LB6RYLLslPFW0MocLpFo+HYGqaUdQ5wMkwO1GDaL0G3TYnarvskuRkKp2T3nSZ/PRY0WToPwfzM2I942jqJj06BrqsDjR0eVIR8zPiJJHh1DQTPj7aSGvhGDnTagXgqfai14sX0hTLfgr0GYpzceh0OhQUFAxwyZeUlGD+/PmDvqewsHDA9Vu2bMHcuXP5L+qCCy7AqVOn4Hb7ct9OnDiBtLS0QQ1kOeD2O5Cg8nrEJ3kL759upgMnY4H73s4SqQ3uYHBNRU5TW9wxwclwYpI0MmQYhv/9nKaDX6OGZVmcaZJ2HnLPbeyywWylvPLRwv3uk71tvqWAqzJDa+HY4NdCifSoXFCckQwAq1atwiuvvIJXX30VpaWlePDBB1FVVYXly5cD8KRB/PCHP+SvX758OSorK7Fq1SqUlpbi1VdfxaZNm/DQQw/x1/z0pz9Fa2srHnjgAZw4cQL//e9/8dRTT+Gee+4R/fMFin+vAsYrSe4keG1HL1W4GAOccpfKwAKAvCRS7uPhdJNnczFRwo0ONw9JhqOn2WyD2eaEigEmJEjTwMBo0PIVLs7QZnXUcBt8afWodw42dVOFizHAOxuSw/vgquLSLQDg5ptvRmtrK5544gnU19djxowZKC4uxoQJEwAA9fX1fWom5+bmori4GA8++CBeeOEFpKen47nnnsONN97IX5OVlYUtW7bgwQcfxKxZs5CRkYEHHngAv/jFL0T/fIHCDuJJTojSwRShRWevA+UtPZiWThUuRoMcFAO3sJwhA2vUuNwsyls9C7SUHpCJSRQNGCunvL97T2OWwSsLicHEJE+Fi9PN3ZidFSvZOJSIHPRoTkIUGAbosjrR0m3nNz1EYJyRwUZHDijSSAaAFStWYMWKFYP+7fXXXx/w2sKFC7F///5h71lYWIjdu3cLMTxR8Pckczn1DMNgYlIU9ld14ExLNxnJo+RMi/SKIdfrAWnptqPT4oApkvLpAqW2vRd2pxs6jQrpseLllPdnoleGtNEZPXz5PokX57ykaOw+00ae5DFwRuKUJwAwaNXIiotEVZsFZ5q7yUgeBSzLSp62JhcUmW5BeGAx0JMM+IXrm0i5jwarw8W3Eha7gYE/0XoNX9fzdAsZWaOBU+x5iVFQB/k09nD4e5Ip1Ds6fIuztGHeiZT2NGZOy2ajw6U90Vo4Ghq6rLDYXVCrGGTHS5PyJBfISFYwfXKS/ewBUu5jo7LVAjcLxBg0SBK5jWp/uDAlHfwaHXLxfmQnREKtYtBtc6LJbBv5DQSPHPJZPc+nvPKx4HS5UdnKyZA2OkqEi55MiI8M+xKW4f3pFY6/h4qBz0rmQ73khRwV/iFCqTvd5SV685JbyAMyGnweLGkXZ71Gjaw4T7oHLdCjg5uHUnshOQOrosUCl5uiAYFS3d4Lh4uFQatCukm6lCeAzneMldMymYNygIxkBTNYTjLgO9V/uqmnTy1lYnjk4oX0jIE8yWNBXjKkw3ujpdfuQm1HLwDpvZDpsRHQa1Swu9yoaQ+sOxfh01l5idFBb0AxEhMp3WJM8If2wryyBUBGsqIZrE4y4DkVrlEx6HW40NBllWJoikQuXkjAb6NDHpBRIYcDQxwTqVbyqClv6QHLArGRWsRHSVufXq1ikJtIKRejxeeFlF6Pcp7Q6nYLrA4qiRoovLMhUXo9KjVkJCuYoXKStWoVsr31RelkduDIycDilHtVmwUOl3uEqwkA6LQ40NJtB+CrECIleYlc2hPNwUDhUsTyEqMkT3kC/MP1JMNAkVPpsMRoHYwGDVjWc+aECAy+XwB5kslIVjJcTjLDYMCCQgcWRoen5I23vq4MFEOa0YAIrRoOF8tX3CCGh6sEkmo0IFovfXVL8iSPHr4RjAwMLIAO740FX41k6WXIMAxF5UaJxe5EXacnAp1HnmQykpUMl22hGsTjQh2/RkeT2YZum9Nb8kZ6I1nVJ9RLXqxA4HMhZeBFBnyeZOp+GThyOzBE5TRHj38ZRjnAGXq0WQ0MLhIQH6VDnMQpT3KAjGQFw+UkD3Y2gsKEo4NT7NkyKnnDeUDoZHZgyKERjD/xUTrEehvBlFPKRUBw6RZSH9rj4PUoVQoKiLYeO9otDgDy2axyKQOU9hQYcqlTLhfkYQ0QY2K4whWUbjE6fLVZ5aMYKNQ7Ovg8OpnI0NP9kuZhoLjdrC/dQgahesBn6LV029FhsUs8GvnDbegzYiMQqZM+5QmgtXC0yCmnXA6QkaxgWN6TPNCVzBkK9Z1W9Nicoo5LicilNqs/eVRCbFRwniJZyZCqIwRMo9mKXoe8unxF+Xe/pHk4ImdkVCGIw9cinrpfBoJPj8pHhlJCRrKCcfM5yQP/FhvpC/VW0cGvEeFOPuckyEcx5HrHQqeyR8blZlHl/Z5yZZILCQA53rFUkQxHpKLF8x1lxUVAq5bP0pST6DHYq9rISB6JCm+nPTnp0az4SDAM0G1zorWHogEjUSlDGUqJfDQRMWrcw3iSAWCC90deQblYI8J9RzkJ8vBgAcAE7+Lc0m2D2eqQeDTypr6zF3aXG1o1gzSTQerh8HALTXkrzcGR4AysCTJbnHkZttBGZyR8MpSPHtVr1HznP1oLh4dlWf78RI6MnA1SQkayguEiR0PVE831KqoK8mINi9PlRrW3o5acFIPRoEWC93QxeZOHh/t+suIjoZGhF5LkNzKcgSWnSADg0wmVtNEZES4aIDcZcuOhtXB42i0OmK1OMAxkk/IkNfJZTYhRw2Lo6haAzyNDyn146jutcLhY6DQqPv9QLnAeGTKyhkeOYV7ANwfbeuzo7KVowHBUeg0sOXkhAV90iQys4WFZll9r5BYN8OlRWguHg9OjaUYDDFq1xKORB2QkKxi3txHbUOkWnBerghTDsPAhwvhIqIbacUgEZ/SRDIeH20TIzcCK1muQGK0HQHnJIyH3jQ4ZWMPT0m1Hj90FhgGy4iOkHk4ffHqU5uBwcOkoctvkSAkZyQrG7ddxbzB8OcmkGIZDzoqB8soDg8ujk1uYFwByvZtVykseGo8XUp4bHW48HRYHlYEbBm6Tk26KgF4jLy8kJ0PSo8PDbSI4BxtBRrKi8eUkD/53rjpCQ5eVOn4NQwVfFUF+ioFyWgNDrmFewM8TSQv0kDSZbXz5t8w4ec3DSJ0GKUZPNIA8kUNTIeuNqi8iR2XghoYqWwyEjGQFM1J1i9hILYwGT0F3KgM3NHI2sCjdYmTcbtavhJ+8DCyAcloDgTOwMmIjZNPx0h9KuRgZuUYCAF8ZOLPVyXcEJAYi56iqVMhPGxEB46uTPLiRzDAMfzKb2uIODV/yRoaKgRtTk9lGTWGGoKHLCpvTDY2KQUasvHIhAV91BNroDI0cS4f5k5tAenQkymXshTRo1UjzHsomGQ4NpVsMhIxkBTNSTjJAHpCRcLlZVLf1ApCnYjBFavmmMJRyMTicgSW38m8cOTQHR6RCho1g/JlAaU8jwofq5SpDmofD0mHxVeCZEC9PGUqB/FYUImDYETzJANVKHgmuCYVOrUKaSX5eSICMrJGQc5gXALITuKYwdmoKMwRyTnkCKO1pJFiW5Uv4yTHlCfCP6NBaOBichz3VaECETl4HL6WEjGQFM1KdZIB2zyPha0IRAbXMyr9xUE7r8Mi1dBgHNYUZmQqZG1hUr3x42nrsMNuc3vJv8pRhDtVKHha5OxukgoxkBcPlJA9n2vG1kikPa1DknI/MQWXghkeOLcX7Q3nJQ8OyrGxbUnNw+oGawgyOEppQkB4dHrk7G6SCjGQF48tJHtpM5n7wdZ1WWB1UBq4/cs+jA/qWLyIGwntAZCxD8kQOTXO3DRa7CyoZNqHgiNJrkBTjKQNHnsiB8JEAGc9Bak09PLyzQcYylAIykhVMIDnJ8VE6xOg9ZeCqqQzcACpkXDqMgwysofH3QubK2AOSQ16sIeF+1+mx8mtC4Q+lPQ2N3HPKASDbmwbS2UtNYQZDCWuhFJCRrGB8dZKHvoZhGP5kNpW+GYgS6kLmUFOYIWnsssHqcEOtYpARJ08vJEDpFsOhhJQngDY6w1GuAAMrQqdGKpWBGxIlbHSkgIxkBRNIugXgf3iPPCD+uN0sKts45S5fxeDfFKayjZS7P5zRmRkXAa0My79xkBdyaCplXiOZgzY6Q6MUA4uicoPTaXHwTVbkPg/FRr6rCjEivnSL4a/LpfJFg9LQZYXd6YZWzSA91iD1cIaEYRhfPl0LKXd/lNJGlTMemqkpzADkXiOZgwyswWFZlvfMyl2GdL5jcLjvIzlGjyhveibhgYxkBRNITjLgU+6kGPrCN6GIk2cTCn8m0EZnUJSSR2eK0CLeWwaOZNgXpXghKd1icDosDpitno1ftkzLv3FQhYvBocoWQyNvy4AYlkA67gF+YULyQvaB+z6UEF6iGp+Do4Sccg7yRA6EZVnZ10jm4OTX2mNHFzWF4eHaUSuhCQWlPQ2OktZCsSEjWcHwdZJHsJJ9ZeB6YXPSwS8OJZR/46CNzuDwnmQZthTvD3VtG0hrjx3dMm9CwRFj0CIx2hMNqCIji8enR+UtP8CnR8nZ0BclrYViQ0aygmEDqG4BAInROkTp1GBZoLqtV4SRKQMlhZioc+JAWJZVTE4y4NdenDY6PJz80k0Rsm1C4Q9tdAbiiwTIfw5yntJ2iwOdFooGcChpLRQbxRrJL774InJzc2EwGFBQUIAdO3YMe/22bdtQUFAAg8GAvLw8bNy4cchr33rrLTAMg+uvv17gUQuLrwTc8FYywzCUizUISgoxcWFCagrjo9nsa0KRGacAGXKlGMnA4ilX0BwEKKd1MOTeLdGfSJ0Gyd6mMLTR8VFBLamHRJFG8ubNm7Fy5Uo8+uijOHDgABYsWICrrroKVVVVg15fXl6OxYsXY8GCBThw4AAeeeQR3H///XjnnXcGXFtZWYmHHnoICxYsCPbHGDfuAKtbAH7tqUkxAPB4IavaOMUgf+Xu3xSmiprCAABfvi89NgI6jfxVGUUDBlKlkPJvHJTTOpBKhRlYFA3oi9nqQFuPp7mKUmQoJvJfWQZh/fr1uPPOO7Fs2TLk5+djw4YNyMrKwksvvTTo9Rs3bkR2djY2bNiA/Px8LFu2DHfccQeeeeaZPte5XC7cdtttWLt2LfLy8sT4KOMi0DrJgC/fr6ad0i0AoKXbjl6HCwwDZMTKtwkFB8MwvAypc6IH7nuQ+4l6Dm6cngYoFA0AgGqvPpJ7PjJHdgLNwf7UtCtrHtJa2BcuBTMuUosYg1bi0cgPxRXEs9vt2LdvHx5++OE+rxcVFWHnzp2DvmfXrl0oKirq89oVV1yBTZs2weFwQKv1/DCeeOIJJCUl4c477xwxfQMAbDYbbDYb/++uri4AgMPhgMMR/Hwnp/cQHgN2xOelGz0hpsrWblHGJnfKmzyySjMawLAuOCQyWjhZBCKTzDgDjtV3oaKlGw5HfLCHJnsqmrsBAJmxBkl/04HKMFoLROnU6LG7UNlsRl6S/CMYwYbzqmcY9ZLJcDRzMC3Gc3Cvus1CehRAj82Jlm6PFzItRqsIGWaYvGthC62FAFDe7FkLs+IiFKFHhX7eSCjOSG5paYHL5UJKSkqf11NSUtDQ0DDoexoaGga93ul0oqWlBWlpafjqq6+wadMmHDx4MOCxrFu3DmvXrh3w+pYtWxAZGfxd9aE2BoAanZ2dKC4uHvbahg7PtaVVzSNeGw580+z5PiLZXll8HyUlJSNe42hXAVBh+/5jSGw7EvxByZzdpzzfR09TFYqLK6UeTkAyNGnU6LEzeHfLdkyLY0UYlbw5Va8GwKCydD+Kq6UdSyDy67IDgAb1nb344KNiKCDLJ6jUWQBAgwg1iy+/GPn7CzaByLDNq/sPnKyWhd6Qmi/qPN+H2tqhmLVQCCyWwKJBijOSOfqnGLAsO2zawWDXc6+bzWb84Ac/wMsvv4zExMSAx7B69WqsWrWK/3dXVxeysrJQVFQEo9EY8H3GzKE6oOwI4mJjsXjxvGEvnd5qwUulX6LDqcZVVxUFlKIRylRsPQOcOoVZEzOwePEMycbhcDhQUlKCRYsW8RGNoWjfU4UvPjoOjSkFixefLdII5csbm/YCze247Pw5WDwrTbJxjEaGH3UcRF1pE1LPmo7F87JFGqE8sTpceGDXZwCAm6++nG+2IjajkR/Lsnjq0Gfodbgxq3Bh2FcD+Ox4E/DtQeQmG7F4caFk4xiNDFMq2/HGqb3oVUVi8eKLRBqhfPnmo1KgshrnTsvD4qLJko1jNDIUAi7yPxKKM5ITExOhVqsHeI2bmpoGeIs5UlNTB71eo9EgISEBR48eRUVFBa699lr+7263GwCg0WhQVlaGiRMnDrivXq+HXq8f8LpWqxVFyIzK48ZQq1UjPi87MQYqBrA63OiwuZEcI982zGJQ22kFAOQkRosiq5EI5DeTkxQDAKjtsMpizFLD5RTmJsXI4vsIRIbc4b3aDpssxiwlle2eORit1yDZFCn5xj1QvZ0dH4WyRjPquhyYlBreMqzr5A58Rcni9xyIDPOSPQ6suk4roFJDK/Nuq8GmpoNbC5WjR4V6TiAo7teh0+lQUFAwwCVfUlKC+fPnD/qewsLCAddv2bIFc+fOhVarxdSpU3H48GEcPHiQ/2/JkiW45JJLcPDgQWRlZQXt84wHdhTVLXQaFdJMngNqdOjEd1ghK17+h/Y4uAMnVW0WPhISrticLjR0eZS7Ug59Ab6xVrfTHOTmYGZchOQG8mjgdAbpUd/vWElzMClGD71GBTcL1HsNxHDGd3hWOWuhmCjOSAaAVatW4ZVXXsGrr76K0tJSPPjgg6iqqsLy5csBeNIgfvjDH/LXL1++HJWVlVi1ahVKS0vx6quvYtOmTXjooYcAAAaDATNmzOjzX2xsLGJiYjBjxgzodNKEAUci0DrJHNwkoBJifspdAfV1OTJiI8AwgMXuQqu3ZE+4UtdhBcsCEVo1EiQK04+FbH6jQyfrlWhgAaAqM37wzoY45RhY/pWCwn0tZFmWr06ipLVQTBSXbgEAN998M1pbW/HEE0+gvr4eM2bMQHFxMSZMmAAAqK+v71MzOTc3F8XFxXjwwQfxwgsvID09Hc899xxuvPFGqT6CIPjaUgd2fXZ8JHafaQv7rnsOlxt1HZ7vQClliwDAoFUj1WhAfacV1W0WJEYPTPUJF/zLvynLC+kzsEY6RxHqKK2EH0c2GVg8NQrd6GTHR+JUU3fYy7C52warww0V46k3TwxEkUYyAKxYsQIrVqwY9G+vv/76gNcWLlyI/fv3B3z/we4hN7iAe8Ce5DhS7oAnxOZmAb1GhaQYZRmaWfGRqO+0oqrNgrOz46QejmRwv2GlhQgzvR63bpsTHRYH4hTkBRcaXoYK8kICPj0a7ikz/g2ZlGYkc7+5cJcht1FNMymjIZMU0LeiYPgKHQFezxXCD3cjmVOMSsuFBPwWaJIhAGW0o/bHoFUjxVuzPOznYZuyGolw8Ho0zLvutfXYYbF76ssroSGTP5Ru4cH/XAAxOGQkK5jR5yR7Ow2FuWKoUmiYF/CNOdxTZmralJcuw0Hhes8GX6npFtxGtcvqRKclfJtRcAe+Uo0GGLRqiUczOrIprxyAclOexISMZAUz2pxkTrnXd1lhc4ZvW9xqhYYIASA7gQ5fAlBsmBegcD0AdPY6YLY5ASgvGhChU/PnAcJZhkpNeQLo8CWHkvWoWJCRrGDYUXqSE6N1iNCqwbJAbRj3redL3ihscQYor5zDVxmBFmglwkVCEqP1iNApywsJANlUKcjnbFCiHvXOwXaLA13WcI4GKFePigUZyQrGPYo6yYCn9A0fZgpjI1nJHhBOfvWdvXC43BKPRhq6rA50eMPcSlygKd1C+YszydBX2SJTgV7IaL2GLx1Jm1Vl6lGxICNZwbj9WmsHCtVK9uVkKzHE5F8InytjF25wi1pClA5ReuUV6KFDQ8o+FwCQDAHlyzAzzCM6Dpcb9Z3KPdshFmQkK5jRepIBCvX22Jx8Iw4lGsn+0YBwXaD5E9kKlB/gW5DqOqxwhmk0QMmheoD0KKDMRiL+hPsh6LqOXsWWQhUTMpKVzBg8yeF+qpcL85oitDAapO9TPxaywly5+zpEKXNxTo7RQ6dRweVmUd8Znm1xld4KN9z1qNOvIZMSnQ0A5ZUrtS282JCRrGDG5EkO84Nf1QouHcYR7p5kpYd5VSqGr0sarjJUcoUZwDfu2o5euDhFHEbUd1rhdLPQqVVIMRqkHs6YCPe1UOl6VCzISFYwY8lJDveGItUKPrTHEe6hXqUbWEB4eyLdbpavrqPUdItUowFaNQOHi0VDV/hFA7iIXEZcBNSj8dLICN8h9vCbg4D/4VllzkGxICNZwYzHk2wO00L4VQrPhQSopaqSS/hxhHM0oNFshd3lhlrFIM2kTC+kWsXw9Z3DsfNeTQh0avM11+qFOwyjAUo/FyAWZCQrmNHWSQY8hfC5JP1wXKBrQmD3HM7RACV3avMnnI1kzqjMiI2ARq3cJSicIzqhEKpPMxmgUTGwu9xoNIdhNCAEInJioFwNRYzJkwz4PJHhuEDzJ7IVrBi4nX9HGBbCbzbbYHO6oWKAtFhleiEBX5e5cKxXrvRDexzhHNEJhVC9Rq1CeqxXhmF4CDpU5mGwISNZwYwlJxkI31wslmX90i2Uqxii9BokRodnIXzuN5tmioBWwV7IcM5JDpUwbzhHA0iGyqbb5kSbgkuhiolyVxmCqwCH0VZvCVfF0NpjR6/DBYbxHDhRMrwnMsxkGAphXsDnvWnrscMcZtGAUAnzhqseBYCqEKgSBIRvUxhuDsZGKrcUqliQkaxgxpKTDIRvpyHu86YaDdBr1BKPZnyE6wLtS5dR9iYnxqBFXKRncQq3UG8ohOqB8M1J7rW70NJtA6D8eciNP9xkGCqRADEgI1nBjDUnOVxDvaFQ2YIjXLtFhZJyD9e0J6V3auPgjOSWbjssdqfEoxEP7vBzjF4DU4SyvZDhuhZSPnLgkJGsYMabk1zTHl6F8GvalX9ojyMrTLtFcQYlV+FDyYSjJ9LqcPGVBJQeqjdFaHkjMZw2q/6RAKV3agvfiFxoRHPEgIxkBcOO0ZOc4i2E73SzqO8MI+UeAo1EOMLRwAL8W6kqX7mHYz5kbUcvWBaI1KkRH6WTejjjJhw3q1wJv5DQo1490mS2wepwSTwa8QiliFywISNZwbjHmJPsXwg/nDwgoZhuUdMePoXwHS43v6kLhQU6HEO9/ouz0r2QQJjKMASa+XDERmoRo9cA8KWRhAOhci5ADMhIVjBuvrrF6BebcPREhlKoPs0UEXaF8Os6euFmAYNWhaRovdTDGTfhGOqtDqGUJyA8owF8M58Q0KMMw4SdDD0NmUKjOokYkJGsYFh4c5LH8N5wayjidLlR1+ExJkPBA6JWMXwZu3Bpi1sVYl7ILL+GIuESDQillCfAT4ZhokeB0IrIAX4pM2GiR1u6faVQ0xXckEksyEhWMGPNSQbC72R9facVLjcLnUaF5BjleyEBfxmGR8pMKHRL9Cct1gC1ioHd6Uazt6RWqBNquZDhpkdZlvU7AB0aG52w06PtoVMKVQzISFYwY81JBsIv1MstzplxEVCNZVchQ8ItTMiny4SIkaxVq3hPDslQmfjrUa5ufSjTYXGg2+YpdxcKh2eB8F0LQ8XZEGzISFYw7jF23APCLyeZP6gQIoodCL9Qb5XfRidU4GQYLqFeX2WE0JiH6bERUDGA1REe0QBuDibH6GHQhoYXMtyaa4VaNCfYkJGsYMbacQ8Iv0L4VSGWCwmE38n6mhD0gIRTuL6z14EuK+eFDI15qNOokGbiuraFfrg+FKsi+OvRcIgGhErXUrEgI1nB+Drujd5INkVoYTR4St+EhXIPwdO84VajlcsZDC0Zhk+ol9vMJUbrEOUtuxUKcAZ/OGxWQ1GPZsR65Ndjd6Gtxy7xaIJPqKU8BZtxGckOhwPV1dUoKytDW1ubUGMiAsSXkzy294dTykUop1uEQyH8bpuTX8BCyYvFGVg1YbFR5dJlQkd+QHjpUV9li9DxQhq0aqQYPYe5w+HwXlUIRuSCyaiN5O7ubvz5z3/GxRdfDJPJhJycHEybNg1JSUmYMGEC7rrrLuzduzcYYyX6wUeGxmgkh1OoNxQPK/QthB/ayp2TX1ykFtEh5IUMqzkYgqF6ILxkyDXcyAxVGYb4RsfpcqO+M3RKoYrBqIzkZ599Fjk5OXj55Zdx6aWX4t1338XBgwdRVlaGXbt24fHHH4fT6cSiRYtw5ZVX4uTJk8EaN4Hx5SQD4RPqtdidaOn2eiFDSDEwDBM2h05CcZMD+D5PQ5cVNmdoRwP4XMgQ8kIC4ZX2FKqHvvgDtCEuw1AshRpsRuWS2blzJ7744gvMnDlz0L+fd955uOOOO7Bx40Zs2rQJ27Ztw6RJkwQZKDEQ9zjqJAO+xSrUc5I5L6vRoIEpUivxaIQlKy4CpfVdIe/FCtUQYUKUDhFaNXodLtS29yIvKVrqIQUNToahlgvpqzIT2nrU5WZR2+HNSQ6Bbnv+cM6GUG9N7V8hKFRKoQabURnJ//73vwO6Tq/XY8WKFWMaEBE4XE7yWLuPZYWLYgixslP+hEuYkG9gEGIeLIZhkB0fibJGM6pD3EgO9XSL+s5eOFxuaNWheR6+ocsKh4uFVs0g1Rhandp8ejS0NzqhGgkIJmOezVVVVYOWS2FZFlVVVeMaFBEY46luAfRNtwjl0jeheGiPI1xSZkKtnbE/3GcK5Y2O282G7EYnKUYPvUYFNwvUdYSukcX9PtNjI6AOMS8kF1UNeT3aHrp6NFiM2UjOzc1Fc3PzgNfb2tqQm5s7rkERgcGOs7oFV/rGEuKlb/iyRSEWIgT8DazQXZyB0A3VA75qD6FsJDeZbbA73VCrGKTFhpYXkmEYvzJwoTsPQ3kOcs6Guo5euNyh6zCqCsESfsFmzEYyy7KDhvm7u7thMARfCb744ovIzc2FwWBAQUEBduzYMez127ZtQ0FBAQwGA/Ly8rBx48Y+f3/55ZexYMECxMXFIS4uDpdffjm+/vrrYH6EcTNeT7JBq+bDZqFc+iYUyxZx+HfdC9VoAMuGrhcS8CshFsJpT9xnSzMZQjIdIRxkWBOiJfwAIMVogFbNwOlmUd8ZumshpVuMnlHXUlq1ahUAz+75scceQ2Sk78t2uVzYs2cP5syZI9gAB2Pz5s1YuXIlXnzxRVxwwQX485//jKuuugrHjh1Ddnb2gOvLy8uxePFi3HXXXXjjjTfw1VdfYcWKFUhKSsKNN94IANi6dStuueUWzJ8/HwaDAU8//TSKiopw9OhRZGRkBPXzjBUWXE7y2O+RFR+Bhi4rqtosmJMVK8zAZEaoli0CfAuW2eZEZ68DsZE6iUckPC3ddvQ6XGAYT6g31AiHfMhQX5yzwyDtiXOkhGKoXq1ikBkXifKWHlS1WUJyIwD41sJQOxcQTEZtJB84cACAx7tz+PBh6HS+RVmn02H27Nl46KGHhBvhIKxfvx533nknli1bBgDYsGED/ve//+Gll17CunXrBly/ceNGZGdnY8OGDQCA/Px8fPPNN3jmmWd4I/nNN9/s856XX34Zb7/9Nj777DP88Ic/DOrnGSucJ3lcRnJcJPZWtIdsqJdlWf6zhWKIKUKnRlKMHs1mG6rbekPSSOa8c+mmCOg0oeiFDP18yFDs1OZPVhikzISyHgU8FR/KW3o8jX0mSj0a4elTCjVEZRgMRm0kf/HFFwCAH//4x/jjH/8Io9Eo+KCGw263Y9++fXj44Yf7vF5UVISdO3cO+p5du3ahqKioz2tXXHEFNm3aBIfDAa12YFkwi8UCh8OB+Pj4Icdis9lgs9n4f3d1dQHwdCJ0OBwBf6ax4nJ56qqybveYn5cR66mVWNXaLcqYxaa1x44eu+d7SonSyO4zcuMZz7gyYw1oNttQ3tyFqSmhp/zKm8wAgIxYg+zkB4xfhqnRHv3T2etAm9mCGENolSkEgIrWbgBAukkvOxkKMQfTjJ7NaVVbj+w+n1Bwm7i0GJ3sPqMQMszw5spXtITmWsjpUaNBg0jN+L6rYCCEDMfyvJEYlZFcVVXFpzO89tprI15fW1sreKpCS0sLXC4XUlJS+ryekpKChoaGQd/T0NAw6PVOpxMtLS1IS0sb8J6HH34YGRkZuPzyy4ccy7p167B27doBr2/ZsqVPGkqwqK1TAVDh5IkTKO4uG9M92poYAGocOFmN4uJKQccnByrNAKCBScvis5L/ST2cISkpKRnze1W9nt/Bp7sOgK0Kvbzkz2s8v1H0tKK4uFjq4QzJeGQYrVGj28ngnx+WIDNKwEHJhEOn1AAYtFSWobj4uNTDGZTxyK+mBwA0ONPQKevf6Fixu4Ams8dcOL7vK9QcknhAQzAeGVoaPXpmz9FTKLafEG5QMuFIm+fzGdUOWf9GxyPD0WCxBBb1GZWRfO6552LJkiW46667cN555w16TWdnJ/71r3/hj3/8I+6++27cd999o3lEwPQ/NDjUQcLhrh/sdQB4+umn8c9//hNbt24d9hDi6tWr+RxtwONJzsrKQlFRkSge9i2bDwItTcifOgWLL8wb0z0SK9rw5ulv0KuKwuLFC4QdoAz47+EG4MghTEqPw+LFg/9mpcThcKCkpASLFi0aNKIRCGWfnsK+bWcQlTIBixdPE3iE0vPl+0eB6loUzpyExZfILw4qhAw3Ve/GoZouTJhWgCump4z8BoXx22PbAVhx7aWFOFtmZx+EkJ/Z6sDvD32BbieDhZcVISqEWqcDwOnmHuDrrxClV+O7SxaNuTZ/sBBChsyRBnxQdQjuiDgsXjxP4BFKT/OuSqCsDNMnpGDx4jlSD2cAQshwNHCR/5EY1UwuLS3FU089hSuvvBJarRZz585Feno6DAYD2tvbcezYMRw9ehRz587F73//e1x11VVjGvxwJCYmQq1WD/AaNzU1DfAWc6Smpg56vUajQUJCQp/Xn3nmGTz11FP49NNPMWvWrGHHotfrodcPbO2o1WpFETJXnESj0Yz5eXnJHmO+vtMKlVoTcvUvazs96TDZ8VEiyWRsjOc3k5PoaUBR22mT9WccKzXtVgBATlK0rD/feGSYHR+FQzVdqO+yy/ozjgWb04WGLo8Mc5OMsv1845FfvFYLU4QWnb0ONHQ7MDU6tA631Xd5c1njIvucQ5Ib49KjSTEAgJoOq2x/o+OBWwsnJIauHh3tcwJhVKdg4uPj8fDDD6Ourg4vvfQSJk+ejJaWFpw8eRIAcNttt2Hfvn346quvgmIgA57DgQUFBQNc8iUlJZg/f/6g7yksLBxw/ZYtWzB37tw+X9Tvf/97PPnkk/jkk08wd+5c4QcvMO5x1kkGgJQYA3RqVciWvgnlyhYcfOfEED00FMrNYDiyQ7iEWF2HFSwLRGjVSIyWr4E1XkK5Skmodkv0h5Nfs9mGXu85llCC+12GYinUYDLqmFBhYSE++eQT3HDDDbjhhhuCMaYRWbVqFZYuXYq5c+eisLAQf/nLX1BVVYXly5cD8KRB1NbW4m9/+xsAYPny5Xj++eexatUq3HXXXdi1axc2bdqEf/7zn/w9n376aTz22GP4xz/+gZycHN7zHB0djehoebaKHW9bagBQqRhkeE/1hmLpm1A/VQ/4qiPUtPfC7WahCqFogMPlRn2nxwsZ2jIM3eoI/t0S5RamF5Ks+Agcru0MySoloV7ZAgBMEVrE6DUw25yoabdgUkqM1EMSFCr/NjZGXU/psssuQ2FhIfbs2ROM8QTEzTffjA0bNuCJJ57AnDlzsH37dhQXF2PChAkAgPr6+j6tsXNzc1FcXIytW7dizpw5ePLJJ/Hcc8/x5d8AT3MSu92Om266CWlpafx/zzzzjOifL1C4I1rjXXZ8nsjQ84CEciMRjjRTBDQqBnaXG41mq9TDEZT6DitcbhZ6jQpJMQNTm0IFzkseigZWVYjXSOYI5TJw4aBHGYbhI46hFtFhWdYnQzKSR8WoPckbN27EhAkTcNlll+GNN97A9ddfH4RhjcyKFSuwYsWKQf/2+uuvD3ht4cKF2L9//5D3q6ioEGhk4sGOs+MeB6f4Qk0xuNws6jq4AvihqxjU3mhAZasF1W29SDOFzkLG/SYz40LbC8l56Grae0c8hKw0wiFUD/g5G0JMjwJ+ofoQl2F2fARK67tCLmWmrccOizeFJCMEGzIFkzFV5l+9ejX+/Oc/49Zbb8Wf/vQnocdEBIgQOcmAT/GFmhervrMXTjcLnVqFFGPwW6VLSah6IsMhzAsAabEGqBjA5nSj2Wwb+Q0KoiZMDKxQ1aOh3pDJn5DVo95uialGAwxatcSjURZjrlNz2223IT4+HkuWLMHbb7+NefPmoaCgAOeccw4mTZok5BiJIRAiJxnwP3ASWoqBU3QZcREhV7WjP1xecqjKMNQNLK1ahTRTBGo7elHVZkFyCG3qwiFUD/hF5NpCKxrQ2euA2eYEgJA7s9KfUD0bUOV3LoAYHWPyJLe3t+PXv/41fvzjHyMpKQmZmZn4+OOP8YMf/ABTpkyByWQSepzEILj5dIvx3YfPpWsPrRAT58HKDPHFGfBT7iEW6uV+k6GezwqEboWLcEm3yIiLAMMAvQ4XWnvsUg9HMLjUg8RoPSJ0oe2F9M3B0FoLq8PkXEAwGLUneeXKldi0aRPi4+Px2GOPYdmyZXytYKvVigMHDuDAgQOCD5QYCMunW4wzJ9m7u+RK34SKIuQW51APEQKhe2ioOkw8yYBnHu46E1olxLqsDnRYPO1fQ12Geo0aqUYD6jutqGqzIDE6NA6a+vRoODgbfBG5UIoGUGWLsTNqI/mjjz7Cs88+i9tvv31AMWaDwYDCwkIUFhYKNkBiaITyJJsitIgxaGC2hlbpm3AJ1QP+YcLQMbCAvuXDQp1QzIfk5BcfpUN0iHWhG4ysuEjUd1pR3WbBOdlxUg9HEMJJj3LpJN02JzosDsRFhUZd73CSodCMOt2irKwMy5Ytk3XHlnCB5WvAjc9KZhjGL+Ui9BbocAgxcfmQjWYrrI7QKIRvsTv5sHU4KPdQzIcMtwYGmX41y0OFcNKjBq2aLzUZWmtheM1DIRm1kaxWh0YoPhRgBapuAfg8dVWtIaQYuHzWMPBCxkfpEKVTg2WB2o7QWKA5xW6K0MJoCP1NeZZfGbhQIRw6XvrDpXaRHlUu2SFWpcTpcodFKdRgMaaDe4Q8cAuUkwyE3oGFXruLL6U1IT5K4tEEH4ZhQs4TyS1SExLCQ7FzRkhdZy/sTrfEoxEGXoZhsjiHckQuOwz0KNC3SkkoUN9p5UuhpoZQ1RyxICNZwQiVkwyEXqiXW6RiDBqYIkPfCwn48ulCZaMTLp3aOJKi9TBoVWBZ8J4fpRNuuZChVmXG5Wb9Dn2Fhyc51GTIremZcRFQhXgp1GBARrKCEapOMhB6h4bCpfi9P6FW7zqcKlsAoXk2INzmIfc56zqscLqUHw1o7LLC4WKhUTEh1clzOELVYRQuelRoyEhWMGwQPMlcW1ylUxVmizMQeg1Fws3AAkKrSonbzfJRjXCRYXKMHjqNCi43i/pOq9TDGTdVfl7IUG/IxBFq5TTDcS0UEjKSFYyQOclcww2u9I3SCbcwLxB6+ZDh2CWKy4cMhYhOk9kGu9MNtYpBmik8ciFVKgaZsaGzWQ1LPerVN7UdvXC5Q8FhFF4HL4WGjGQFw1eAE+BeBq0ayd7SN6GwQPMlb8JIuWcnhM7JepZlw6oZDEco5UNynyE91gCNOnyWmqwQqo5QE4ZGcpopAhoVA4eLRUOX8qMB4RiRE5Lw0VwhCJ+TLFAYLJTa4oajYuCiAV1WJzp7lR0NaO62wepwQ8UA6bHh4wHh055CwMDiNmvhNAcBv7SnENCj4RiqV6sYZMSFTjQg3M52CA0ZyQpGyJxkIHTyIVmW9auMED4GVqROg8RoT4copSt3bvxppghow8kLGUIHaMPRwAL8c1qVrUcBkqHS9WiPLbwaMgWD8Fl9QhAhc5KB0MmHbO2xo9fhAsOA9wiEC6FyMpszMMJucfZ6IdstDnTbnBKPZnxwntTMMCnhxxFKzSj4RiJhJsOQ0aPeORgbGR4NmYIBGckKxu2tMCSQjexX4ULZioFbnNKMBug14dUhMlQO74WrByvGoEWct6634hfoMJVhqOhR/4ZM4SdDLmVG2dGAcE15EhIykhUMK7QnOVR2z1zZojBUDL4ycApX7mFY2YIjVA5+hetGh9uotnTbYbErNxrAbbSNYdSQiSNU0i3CrSFTMCAjWcEI2XEP8C3OSi99E64eLCB0Qr3hfNgkFDarVocLjV0eL2S4ydAUqYXRoAGg7M1qOM/BUNGjNe3hV+VJaMhIVjCstwgcI0gROCDVaIBWrfzSN+HqwQJCJ90inDc6nAxrFBzq5cYerdfw6SPhRChsdMJaj3o/c5PZBqvDJfFoxk44y1AoyEhWMJyzV6icZLWKQUYIFMKnUL3HSHErNBpgc7pQ792khaMHJBQ6J/p7IRmhFJSCCIXNajgbWHGRWkTpPOdZlLxZDee1UCjISFYwQuckA6HhAQnXyggAkGYyQK1iYHe60dxtk3o4Y6K2vRcsC0Tq1EiI0kk9HNEJhVBvOJZg9Idr7BMK6RbheLaDYRjFN/ZhWTasI3JCQUayghE6JxlQvpFsd7pR3xm+eVgatQrpsZ4WwEo1srgT5dlh7oWsae/lN8JKI9wX51AopxnOzgZA+Wths9kGmzP8GjIJDRnJCkboOsmAf5hQmR6Quo5euFnAoFUhKVov9XAkQeknsznDItzq63Kkx0aAYYBehwst3XaphzMm+FB9QnjKMJNPe1LmHPRvyBS2RnKI6NFwa8gkNPTNKRihc5IB5edD+pe8CUcvJKD8jl/h7oXUaVRIMyo7GlDll5McjvgbWEqMBrR0+zVkClMvpNLLaYb7JkcoyEhWMMHISVZ6PiSXPxbOioHz3ilWhrxyD8/FGVB2QwqWZX2lp8I0GpDpTbfosbvQ1qO8aACnR9OMBug04WkmKH4tDPN0GaEIz19/iBAUT3KcskvfhLsHC/At0Eo9cEIyVHY+pH9L7cwwPbhn0KqRYvSkeykxdS2cayRzKP3gHlW2EAYykhVMMDzJsZFaROs9hfCVWPqGlLufF1KBBhZAYULAt1lVoheLG3Oq0QCDNrzawvuj5JxWamfs2+CZrU50WhwSj2b00FooDGQkKxg2CJ7kPqVvFKjcKcTk++z1XVbYnMqKBnRaHDBbOS9kGMswQbn5kNXkwQKg7HA95z0NZwMrUqdBovfwt5JlGM5roRCQkaxgglHdAvCVL1JimIlCTEBClA4RWjVYFqjrUFbnRE5+STF6ROjIC6nsORjei7OSK1xQNMcDf3hPYTK0Olx819xwn4fjhYxkBROMOsmAcvMhO3sd6Oz1hMXC9cAQwEUDlFmlhBZnD9wcrOvohcPllng0oyPcq5Nw8M4GRUYDwrfWvD9KTZmp7QjvhkxCQkayguE8yUKXOlNqmJBTZInROkR586rDFcXKkEKEAICkaD30GhXcLFCvsGgAH6oP440qoNw52LchU/hG5ADlytB/oxqupVCFgoxkBcPynmSB0y0UWh+Sb6Ma5osz4PsOlBYmDPd2xhwqFaPYKiXh3kiEwz8a4HIrp1YyNWTy4Uu3oLUwXFGskfziiy8iNzcXBoMBBQUF2LFjx7DXb9u2DQUFBTAYDMjLy8PGjRsHXPPOO+9g2rRp0Ov1mDZtGt57771gDV8QeE+ywPdVaiF8CtX78FW4UKZyD/cwL6DMtCeny83nwYf7PEwxGqBVM3C6Wd4zqwSqyAvJw7eIV9AcBGgtFBJFGsmbN2/GypUr8eijj+LAgQNYsGABrrrqKlRVVQ16fXl5ORYvXowFCxbgwIEDeOSRR3D//ffjnXfe4a/ZtWsXbr75ZixduhTffvstli5diu9973vYs2ePWB9r1HDmq0pgKXK7T7PNyef4KgEK1fsIhTBhuKNEGdZ3WuFys9BryAupVjG8LlWSDEmP+vA19emFW0HRAF+Vp/COyAmBIo3k9evX484778SyZcuQn5+PDRs2ICsrCy+99NKg12/cuBHZ2dnYsGED8vPzsWzZMtxxxx145pln+Gs2bNiARYsWYfXq1Zg6dSpWr16Nyy67DBs2bBDpU42eYOUkR+jUSIrxFsJXkCeyqo3y6DiUeCrb5fbr1EYLtF+FCyXNQS7MGwGV0CeKFQiXMqOkiE4Vhep50kwGqFUM7C43Gs3KORtAFWaEQ3Gnm+x2O/bt24eHH364z+tFRUXYuXPnoO/ZtWsXioqK+rx2xRVXYNOmTXA4HNBqtdi1axcefPDBAdcMZyTbbDbYbDb+311dXQAAh8MBhyP4Hli399C72+kU/HmZsQY0m20ob+7C1BRlTLSq1h4AQLpRL8r3LwTcOIUeb2q0FgDQYXGgzWxBjEEr6P2DQW1HL5xuFlo1g/gIddjLMM3oOZVe1dqjmO+ivNkMwGMcKmXMwZIfAGTEGgAAFS3divk+Kls8ejQjlvQo4DGUa9p7Ud5kRmKk/E0mlmV5IznNqCMZjvC8kZC/xPvR0tICl8uFlJSUPq+npKSgoaFh0Pc0NDQMer3T6URLSwvS0tKGvGaoewLAunXrsHbt2gGvb9myBZGRwTcsnS41AAZfffUlSgWObKp6VQBU+HTXAbBV8g8zuVmgus3zfZz6djfajks9otFRUlIi+D2jNWp0Oxn888MSZEYJfnvBOdnJAFAjTuvG/z75WOrhjBqhZVjTAwAanG7oQHFxsaD3DhZbKz16w93VpJgxcwRjDloaPb/pPUdPodh+QvD7B4MjFR492nT6GIrbj0o9nFERDBlGuj2/6f9u3Y3mZPmvhT0OoNvmMe2O7tmOkworNx8MGQ6GxRJYlFVxRjJH/xQDlmWHTTsY7Pr+r4/2nqtXr8aqVav4f3d1dSErKwtFRUUwGo0jf4hx4kyvwcFvD+PaokthijIIeu+yT09h37YziEqZgMWLpwl672BQ32mFa/d2aFQMbrnuKqgVEup1OBwoKSnBokWLoNUK6+3dVL0bh2q6kDO9AEXTUkZ+g8T8e18tcOwopmQmYvHiAqmHEzDBkqHZ6sDvD32BbieDhZcVKaKs4ZbNh4C6Blw4ZyoWX5Aj9XACIphzkDnSgA+qDsEdEYfFi+cJeu9g8auDnwNw4vpFF2JySozUwwmIYMrwK/tRnNhXi/jsSVh86VmC3jsYHK7tBL7Zg6RoHa6/tmjkN8iEYMpwMLjI/0jIX+v2IzExEWq1eoCHt6mpaYAnmCM1NXXQ6zUaDRISEoa9Zqh7AoBer4deP9CFq9VqRRHykjmZ0NQdginKIPjzchKjAQC1nTZRPst4qfP+4DPiImDQK694ejB+M9nxUThU04X6LrsyZNjpSV2akBiliPH2R2gZxmu1MEVo0dnrQGO3E1Oi5Z9rX9Phyb3NSYpRnAyDMQdzkjxGZk2HVRHfR6fFgc5eT1v43GQjtFplmQjBkOEExa2FdgBAdgLp0ZGeEwiKO7in0+lQUFAwwCVfUlKC+fPnD/qewsLCAddv2bIFc+fO5b+ooa4Z6p6hDpfwX+nN85U7Va10Irs/3HdRoRAZVlJliwGQDJUN9z00m22w2J0Sj2ZkqviGTHpE6pRlIAcL31qojEPQlbQWCorijGQAWLVqFV555RW8+uqrKC0txYMPPoiqqiosX74cgCcN4oc//CF//fLly1FZWYlVq1ahtLQUr776KjZt2oSHHnqIv+aBBx7Ali1b8Lvf/Q7Hjx/H7373O3z66adYuXKl2B9PFuQmepJYa9uV0RaXMyJyEhSQfCsSOV4ZKke5kwz7w8mwSgEy7LDY0WHxHIaZEOaNRDhiI3WIjfQ4YpQwDzk9mptI8uPITSA9Gs4ocqt48803o7W1FU888QTq6+sxY8YMFBcXY8KECQCA+vr6PjWTc3NzUVxcjAcffBAvvPAC0tPT8dxzz+HGG2/kr5k/fz7eeust/PKXv8Rjjz2GiRMnYvPmzZg3Txl5ZEKTHKOHQauC1eFGXUcvJsh8wnEKjBZnHzkKUu4sy6Lce6qeMwwJICdBOZ5k7neWYiQvpD8TEqLQYelAZWsP8tOCf1ZlPHAGltz1vZhwnSNbum3otjkRLfOzARXeeZhDGx1BkLe0h2HFihVYsWLFoH97/fXXB7y2cOFC7N+/f9h73nTTTbjpppuEGJ7iUakYTIiPQlmjGeUtPbJXmryBJfNxiglnYNW0W2B3uqHTyDdw1G5xwGz1hKMpTOiDm3dKMJIryMAalJyESHxb3YHyFvlvVrkx5pCzgccUoUV8lA5tPXZUtPRgRoZJ6iENS0ULzUMhke+qSUgO55WVuyeSZVlfiIl2zzxJMXpE6tRwsx5DWc5wBlaayQCDVmE1i4II70lWgIFVQQbWoEzgIzry3+iQJ3lwchSyFlrsTjSZPQegc0mGgkBGMjEkXF6y3L1YLd129NhdYBjqMOQPwzB+C7S8lTvl0Q0Ol3pS19kLm9Ml8WiGx7dRJRn6w+X3yl2PAr5QfS7JsA85ConocHo+NlILU6TyKlvIETKSiSFRmoGVboqAXkNeSH84DwiXjiJX+DAvRQL6kBClQ7ReA5YFqtvkPQ/LaaMzKErRo902J1q6PV7IbIoG9EEp0QCKBAgPGcnEkPhCvfJWDL4DX6TY+0PKXdl4ogHKSLmgw7ODw20a6jut6LXLNxrA6fmEKB2MCmhjLybc2iL3Ocg5G3JpDgoGGcnEkHBh0+p2C5wyLgPHLc7kwRqIL9Qrb+VeQTIckhwFpD119jrQ1uNpYkAy7EtcpBZGg+eMfJWMowG8HqVUiwEoJ92CnA1CQ0YyMSSpRgN0GhUcLhb1nVaphzMkVCN5aJRSHaGCogFDooQycNzinBSjV0T7bDFhGEYRGx1fdRKag/3h1pYmmTeFqaAD7IJDRjIxJJ4ycPLPaSXlPjSccq+RcVOYDosdnb2eJhRU/m0gSshp9UUCSH6DwW9W5axHqYzmkJgitYjzHoSTc8qFr8IMyVAoyEgmhkXuOa0sy6KyhcKEQ8E1hXG5WdS290o9nEGpoCYUw6KEUG8l1WYdFl80QL4GFuWUD4/c18JeuwsNXZ6ILxnJwkFGMjEscs9pbeuxw2xzgmHICzkYKhXDK8xymSp38mANDxc6rW3vhd0pz2gA99ui0mGDkyNzAwvwb0lNMhwMuW90uHx3o0HDt0Inxg8ZycSwyH33zCmsNCM1oRgKvimMTEO9lFM+PEnRvqYw1TJtCkNeyOHhNjpyTZnxb0IxIZ7m4WBwkUr5roW+TQ7DMBKPJnQgI5kYFt4LKVcDi8K8I+IL18tzgeYNLDpsMih9m8LIcx5SM5jh4eRX19kLq0N+ZeC4XNY4akIxJLQWhidkJBPDwnlAqtt64XKzEo9mINTla2TkfrKeW3SojerQcGlP5TI8NGS2OtDS7Sn/Rp7kwUmI0iFGxk1hSI+OzASZt6amw7PBgYxkYljSTBHQqVWwu9yo75TfwS9SDCMjd+VOtT1HRs6eZO53lRitQww1oRgUhmH4SIkcIzpUp3xkuFzthi55NoWhjU5wICOZGBa1ikFWfAQAeZa+qSADa0S4ha+6TX5NYTotDrRbPOXfyAs5NHI+NERzMDDkXAbOF6qnOTgUsZE6mCI8m8DKNjnLkOahkJCRTIyIXEtQsSxLLakDINVogF6jgtPNorZDXtGACmpCERBkYCkfOTeFocOzgZEj0xbxVocLdZ1c+Teah0JCRjIxInI91dthccBs9XQ/ohPZQ6NSMbwBIzdPJH8imxbnYeFCvTXtFtmVgeN+UyTD4fGVgZPXHASoJXWgyDXtictzj9FrEB+lk3g0oQUZycSIyDXUyxlYqUYDInRU/m045KrcqXRYYHBNYdwsZBcN4HPKycAaFrkeoO3bhILm4XD4ZCi3tdC3yaHyb8JCRjIxInIN9VI76sDhFj+5lS/iG4mQgTUsDONrCiO3eVjeQodnA4HTU3UdvbA55XPwi8uvNUVoERtJXsjh8KVbyGsOUspT8CAjmRgRLtRb2WaBW0Zl4Li8MOoQNTK+lBm5eUAoFzJQ5Hg2oNvmREu3twkFyXBYkqL1iOKawrTJJxrA6VHaqI6MXCNypEeDBxnJxIikmQzQqhnYnW7Ue8NycoBKhwWOXL2QlG4ROHwJMRnJkJuD8VG+k//E4Pg3hZGjDCkSMDKcQ6au0yqrpjCUUx48yEgmRkSjViEr3huub5aPcj/DNaGgyhYjwinPqjYLHDIpA9dpcaC1x9OEgpT7yHAH487IyMA600wG1mjgjCw5pT35ZEhzcCTiIrUwGjxVeOQU0TnT3A2A1sJgQEYyERATk6IBAGdauiUeiQeWZXnlzo2NGJo0owERWjWcblY2Hb9Oe39LqUYDoqn824hMTPbOQTltVGkOjoqJSdxGRx56FPCNhft9EUPDMIzs5qHF7uTLv+UlkgyFhoxkIiC4RfB0kzyUe5PZhm6bE2oVg2zyYo2ISsUgz7tAn5aJcud+SxOTyYMVCNwcrO3olU3Hr9PNZGCNBu57Ot0kjzkI+PQBZ8ATw8MZonJZCzljPT5Khzgq/yY4ZCQTASFXAysrLgJ6DZV/C4Q8bqPTLA/lzv2WyPsRGPFROsRGevJ+5eKJ5H5LeZQuExC8gSWTOdjeY0ebN+WJDkAHBrepl4sM+Y0qbXKCAhnJREDw6RZyUQwtFOYdLXyoVyYyPEPKfdT45qH0m1W32y/liTzJAcE5G1p77Oiw2CUejW+zlREbgUgdpTwFgi/1UPo5CFDKU7AhI5kICM6Qqeu0osfmlHg0/qF6UgyBwqfMyMDAAihUPxYmJsnHi9XQZUWvwwWNikF2PKU8BUKUXoM0kwGAPOYhl/aRRxvVgOHnYFM3WFb6kqh8NIdkGBTISCYCIjZShwRvvpMcTmZTmHf05MnIk+xwuVHlPUCYRx6QgMmTkSeZG0N2QiS0alpKAiVPRhsdX6ie5mCgZMdHQa1i0GN3obHLJvVw/HLKSYbBgDQbETATZZTTSmHe0cPlQ7ZbHHweolRUt1ngcLGI0KqRZjRIOhYlIac5SAbW2JCnDMnZECg6jQoTvJETqWXodrMob6F5GEzISCYCxndgQVovVq/dhdoOT8cqUgyBE6FTIyM2AoD0yp0/tJcUBZWKkXQsSsKXV94jefdLMpLHhpzyyimfdWzIJSpX19kLq8MNrZpBZlyEpGMJVchIJgJGLiezucMmsZFaxFPJm1EhF+V+hs+jo8V5NGTFR0KjYtDrcKFB4u6XZ5opn3UsyCXdwu50o5JSnsaEXM53nPZrBKOhlKegQN8qETC8J1ni+pCUgzV25KPcKcw7FrRqFd/CW2ojizzJY4P7vqpape1+WdXWA5ebRZROjRSjXrJxKBG5bHS4tZg2qsGDjGQiYDjlXt4ibaiXSoeNHV8zA6kNLNrojBU5NPbpsTlR7+3yRfNwdKQaDYjUebpfVknY/fK037kOhqGUp9Egl5SZM5SPHHTISCYCJjMuEjq1Cjanm88JlgIysMaOry2uxMqdvJBjhm+LK6EMuQo3idE6xEZSytNo6NP9UsKNDkUCxo5/90uLXbqSqFwJP5Jh8CAjmQgYtYpBTqL0oV5fiIkUw2jhQ71tFtic0rQ2buuxo93iAEBdvsYCV/ZQ0jnIl2CkOTgWfOc7pNvo8DWSaQ6OmrgoHeK47pdSypBqJAcdxRnJ7e3tWLp0KUwmE0wmE5YuXYqOjo5h38OyLNasWYP09HRERETg4osvxtGjR/m/t7W14b777sOUKVMQGRmJ7Oxs3H///ejs7Azyp1EenJF1SiIPiNvN8iEmUgyjJzlGj2i9Bi43i8pWaUK93G8nIzYCETpqKT5aOE+yVHPQ/9k0B8eG1HoUAE7R4dlxIXUpvy6rA01mT51mkmHwUJyRfOutt+LgwYP45JNP8Mknn+DgwYNYunTpsO95+umnsX79ejz//PPYu3cvUlNTsWjRIpjNZgBAXV0d6urq8Mwzz+Dw4cN4/fXX8cknn+DOO+8U4yMpikkpMQCAk43SKIbqdgusDnefWpVE4DAMg0kpHoV6otEsyRi4505OIcU+FiZ5jeTGLhs6ex2SjMEnwxhJnq90uN/+ySZp5iDLsjjlleGUVJqHY4FbC6XSoye9z001GmCK0EoyhnBAUc3aS0tL8cknn2D37t2YN28eAODll19GYWEhysrKMGXKlAHvYVkWGzZswKOPPoobbrgBAPDXv/4VKSkp+Mc//oG7774bM2bMwDvvvMO/Z+LEifjNb36DH/zgB3A6ndBoFPU1BRVOuZ+QSLmfaPTl0VHJm7ExOTkGB6o6+O9SbE6SgTUuYgxapJsMqOu04mSjGXNz4kUfA7dJJhmODX9ng9vNil4rvLajFz12F7RqBhMSKBowFvi1UCI9yj13EjkbgoqirL9du3bBZDLxBjIAnH/++TCZTNi5c+egRnJ5eTkaGhpQVFTEv6bX67Fw4ULs3LkTd99996DP6uzshNFoHNZAttlssNl8bSm7uroAAA6HAw5H8D083DPEeBZHXoKnYPmJBjPsdrvop6JL6zoAAJOSokT93MFCChlOTPJ44I/Xd0ryHR5v8MyTiYmRJMMxMik5GnWdVhyr68DsDHENVavDhYpWbz5rgkHxMpRCfhlGLbRqT73r8uYuZIscFTtW2wHAm4/sdsHhluZ8glBIokcTPWthWUOXJHOgtM6TDkpr4fieNxKKMpIbGhqQnJw84PXk5GQ0NDQM+R4ASElJ6fN6SkoKKisrB31Pa2srnnzyySENaI5169Zh7dq1A17fsmULIiPFU3olJSWiPcvlBtSMGj12F958/2PEi1xec+sJFQAV3B01KC6uFvfhQURMGXZ0MADUOHimEcXFxaI9FwBYFjhSrQbAoOnkQRTXHxT1+cFETBmqezzzoOTrozA1HxbtuQBQ0wO4WQ2iNCy+3v4ZQqV6mJjyA4BkvRq1Fgb/LN6GmfHiltT8tNajA6KcXaLrgGAipgzNDgDQoLrNgvc/LIbYxyt2HfPogN7GMyguPi3uw4OIWDK0WAI7kyMLI3nNmjWDGpv+7N27FwAG9VyyLDuiR7P/34d6T1dXF66++mpMmzYNjz/++LD3XL16NVatWtXnvVlZWSgqKoLRaBz2vULgcDhQUlKCRYsWQasVLyfpzxU7UdbYjczp5+LiyUmiPRcAXjqzE0A3rr1oLi6dIu6zg4EUMjzXbMOLpdvQYmNw2aIroNeKp91bum3o2b0NDAPc/p0rYBDx2cFCChnaDtTh83ePwB6RgMWLzxXlmRzvH6wDDh3B9Mx4XH21uM8OBlLp0c96DqP2UD1MWVOweGGeaM8FgC/ePgxU1ePisyeL/uxgIJUM15d+gbYeB84650LMyAj+mu/Pk4e3ArDjpsvnY1amSdRnBwOxZchF/kdCFkbyvffei+9///vDXpOTk4NDhw6hsbFxwN+am5sHeIo5UlNTAXg8ymlpafzrTU1NA95jNptx5ZVXIjo6Gu+9996IgtLr9dDrB7pStVqtqBNV7OdNTjWirLEbp1t6sWi6eM91uNw40+LZ/U1LjxX1MwcbMWWYFqdBbKQWHRYHKjtsmJ4unoI90+oJEU6Ij0RMpEG054qBmDLMT48FAJxs6hF9HpzyzsEpqUaag+NgSpoROFSPUy0W0b/Hk96yZVPTTCTDcTA5JQa7z7ThdGsvzs5JEO25rd02tHTbAQBT02Oh1crClBMEsWQY6DNk8c0mJiYiMTFxxOsKCwvR2dmJr7/+Gueddx4AYM+ePejs7MT8+fMHfU9ubi5SU1NRUlKCs88+GwBgt9uxbds2/O53v+Ov6+rqwhVXXAG9Xo8PPvgABkNoLeBCMiUlGh/Ck5csJpWtPbC73IjUqZERGyHqs0MJhmEwOSUGX5e34USjWVQjmaoiCMNZydFgGE/N6ZZuGxKjxct74g/tpZIMx8MU7xwoE1mPutwsTnpLz00hGY6LKV4jWewKF9yhvaz4CETpZWHGhSyKKg+Qn5+PK6+8EnfddRd2796N3bt346677sI111zT59De1KlT8d577wHwGAQrV67EU089hffeew9HjhzBj370I0RGRuLWW28F4PEgFxUVoaenB5s2bUJXVxcaGhrQ0NAAl0vZBxqCAWfglImsGMoauNO8MaKfBg81fAu0uCezT/Blp2hxHg8ROjVfAlHszSpn1E2hjc644ObAmeYeOF1u0Z5b2doDu9MNg1aFrDgqozkeuI2i2BsdXo/SHAw6ituCvPnmm7j//vv5ahVLlizB888/3+easrKyPo1Afv7zn6O3txcrVqxAe3s75s2bhy1btiAmxvMD27dvH/bs2QMAOOuss/rcq7y8HDk5OUH8RMqDU+6nmrrhcrNQi2Sw+hQDlbwZL5xyPyn6Roc8yUIxOSUGFa0WlDWaMf+skSNxQmC2OviW9FTnenxkxEYgUqeGxe5CRasFZyWL832e8CvfR86G8TElRRo9ShE58VCckRwfH4833nhj2GtYtu9JYYZhsGbNGqxZs2bQ6y+++OIB7yGGJisuEgatClaHG1VtFtFaC5NiEI7J3gVZzGgAy7J9FmhifExOicGWY42ihnq5MH1yjB6xkTrRnhuKqFQMJiVH49uaTpxoNItoJHt+L5OSaQ6OF67edV2nFV1WB4wGcfKhaS0UD0WlWxDywKPcxQ8zlZFiEAzuO6xp70W3zSnKM+s6rei2OaFRMaJtrEIZKUK9XGoHpcsIw2QJ8pLLqNOeYJgitEg1es4vieVNZlmWInIiQkYyMSYmi9yS0+pwoaLFcyKbFujxExelQ3KM57CXWMqd+63kJUVBpyHVM16m+HVtEysSRpEAYeF0mZjRgBNkYAmKb7MqzvmOxi4buqxOqFUM8pLI2RBsaKUixgTnhRArXH+6uRtuFjAaNLxxR4wPsRdozvsxiRZnQchNjIJGxcBsc6Ku0yrKM8saPbVFKR9ZGMQ+BG13ulHudTaQkSwMU/j21CLpUe9zJiREhkSdeblDRjIxJqamegqnl9YFVpB7vBzzPic/zSh6K+xQZarXSD4msgynpYlbdD9U0WlUfB6rGDJkWbbPPCTGz9Q0zxwsb+mBxR78tKcTjWY43SxMEVqkmajMqRBwa6HYepTmoDiQkUyMienpngl6pqUHZmvwe60f9SqGGRnK7ywkF7jv8ohIyv1InafiDPfbIcYPV+P6SG3nCFeOn7pOK9otDmhUDHkhBSI5xoDkGD1YFiitD/48POqdgzMyyNkgFJwePVrXCbc7+GlPnB6dIWJ9+3CGjGRiTCRE65Hu9USU1gc/zMQZAWK3/gxlOAPrWF0XXEFW7j02Jx/mFbN5SajDzYejImx0jnrn4KSUGArzCgi/Wa0Nvgy5Z5CBJRwTk6Kg16jQY3ehorUn6M87SmuhqJCRTIyZaem+HXQwcbtZHPN6WcjAEo7cxChEaNXodbh4AzZYlNZ3gWWBFKMeSZRTLhjTRZqDgC/iQJEAYeG+TzFkyD1jGslQMDRqFaamibNZNVsdqGj1tIWntVAcyEgmxgy3kw22B6S8tQcWuwsGrQp5VDpMMNQqhl8sg71A85EAUuyCwsmvvtOK1m5bUJ/Fe7DIwBIUX8pMcPWoy8/ZQGlrwsLNiSNB1qNcPnK6yYD4KKpTLgZkJBNjRiwvFmdg5acZoVHTT1ZIOC9WsHNaOQ/LdFqcBSVar+E3jsH2YpEMgwPnbDjRaIbN6Qrac840d8PqcCNSp0ZuAjkbhITPSw7yRucIzUHRIYuDGDOccj/Z1A2rI3jK/RiFeYPGDH6jI5JyJxkKzjQRvFgt3TY0dFnBMHSqXmgyYiNgitDC6WZxsjF4tXaP+lWXoXbUwuKfMhPMmuVH6fCz6JCRTIyZVKMn5ONys0HtGEWneYPHND9PcrCUu83p4huWUJhXeHyn64O30eHunZsQhWi9JmjPCUcYhvFLXQveRoe7NxlYwjM5JQYaFYN2iyOoNcuP0sFL0SEjmRgzDMP47aCDs0CzLEvl34LI5JQYaNUMuqxO1LT3BuUZJxq64XSziIvU8hVRCOHgowFiGFg0B4OCGBEdSpcJHgatmm+SFKx5aHW4cKrZE2mgtVA8yEgmxoWv1m5wFENtRy86vLVZJ1GXL8HRaVR8571g5Zb7QoQmqs0aBLiNakWrJWg1y7mUJzq0FxyCnTLDsixF5IIMf74jSBud4w1muNwsEqJ0SDFShSCxICOZGBe8JzlIu2fuxPfklBjoNVSbNRhMTwvu6Xq+iQjV9QwKcVE6ZMRGAAhe168jfhsdQng4Z0NpfXBqlle39cJsdUKnVpGzIUjMCPpa6IvmkLNBPMhIJsYF55UobQjOyezDtR2e55CBFTS47/bbmo6g3P9wDXmwgg23WT1UI/wC3WGxo5KvzUrzMBjkJkQhSqeG1eHGiUbhz3cc8urRKakx0FKFoKDAbXS+rQnO+Q6fHqU5KCY0W4hxMSEhEvFROtid7qB4Ir+paAcAnJMdJ/i9CQ9ne7/bg1Udgnuxeu0uPhfynAkkw2DBfbf7KtsFv/f+Ks898xKjEEe1WYOCSsVgTnYsgODI0KdHYwW/N+FhRoYJWjWDlm4bqtuEP9/xTWUbAFoLxYaMZGJcMAzDT9r9Ait3h8vNezcLyMAKGlNTYxClU8Nsc+Jkk7BerG9rOuB0s0g1GujQXhDh5se+qnbBvVic0UZzMLgUBEmPAr6NDm1Ug4dBq+bTkfZVtQl67/YeO043e7qikgzFhYxkYtzMzQmOF6u0vgtWhxumCC0mJlEeXbDQqFVB82LxBlZOHOXRBZGZXi9Ws1l4LxYZyeJQkBMPwLPRERKL3clHc+Z6n0EEh7lBiugcqPZGc5KiqNOeyJCRTIwbbvH8plJYL5Z/iJCK3wcXzou1ryJIRjKFCIOKQavmcyKF9GI5XG4crO4AQEZysJmTFQuGASpbLWg2C9di/NvqTrgomiMK/FoosB7l7kd6VHzISCbGzcwg5WJxHhVanINPMLxYbjdLXkgR4RZQIRdoiuaIhylCi8nJnnKMQnoi9/vpUYrmBBdOz5U1mgUtx0h6VDrISCbGTbC8WPt5xUAhwmBzdrbwXqwzLd3o7HXAoFXxdWCJ4BGMtCfuXhTNEYcCrwz3C7hZJQNLPJKNBmTFR4BlwUdgxov/2RxujhPiQUYyIQhCe7FqO3pR32mFWsVgdhaVDgs2RoMWU1KE9WJxv4XZmbFUdkoEzvHzYnUJ5MX6xvtboFxWcfDpUWGcDRTNER+h18Jjdb5oTl4iRXPEhlYuQhCE9mJx95mebkSkTiPIPYnh4YwsobxY+3gDixZnMUiOMSA7PtLjxarqEOSe+3lPMslQDLi5cqS2C1bH+OvOUzRHfLjUNaH1aMGEOIrmSAAZyYQgcIuoULlYtDiLj9AnsymnXHwKBJRhnV80Z05W7LjvR4xMdnwkEqN1sLvcgrSJ534HFM0RD86TfECguvOkR6WFZg0hCMlGnxdrrwChwt1nWgGQF1JM5npzvw/VdMBid47rXk1mK84094BhaKMjJtxCys2f8bCn3HOPGelGROioJbwYMAzjJ8Px69E93nuQHhWPKakxiNFr0G1zjnujw7IsL0MykqWBjGRCMC44KwEA8NWp8S3QzWYbjjd4mloU5iWMe1xEYGTFRyAzLgIOF4s95eNboHd6fwPT042IjaS6nmJxwVmJADxerPFudHacbAEAzPfekxAHToZfnWoZ131YlsWX3ntcMJFkKBZqFYN5ecKshScau9HSbYNBq8LZ1C1REshIJgRDKOW+87Tn/dPSjEiI1o97XERgMAyDCzkZnhyfDPnFmQwsUclJiERGbATsLjf2juPgEMuy/Dy+kGQoKtyc+aaiHb32secln2rqRpPZBr1GRV3aROZC3mEkjB49LzcBeg1Fc6SAjGRCMOZ7vRXHG8xoMlvHfB9+cZ5Ei7PYcAv0l+NQ7mRgSQfDMH4RnbHL8HRzNxq7PAYWhXnFJS8xCmkmA+wuN76pHHtEx2dgxcOgJQNLTLi16+uKtnEdwPTpUYqoSgUZyYRgxEfpMN17gvrLMXoiWZblw7zkhRSf+RM9yvh4gxmNXWPb6Jxq6kZ9pxU6jQrnUukw0eHmzfYTzWO+x7YTnjk4NyeODCyR8Wx0xi9D7r2kR8VnYlI0Uo0G2J1ufD3G1DWrw8WfLSAZSgcZyYSgXDIlGQDwWWnTmN5/tK4L9Z1WRGjVmJdLBpbYJETrMTvTU5f68+Njk+GnXtkX5iWQgSUBF01KgorxbHRq2i1jusdnpY0AfPOZEJfx6lGL3YmvTrf2uRchHgzD4OIpSQB8c2m07D7TCovdhRSjHtPSqHyfVJCRTAjK5dNSAADbTjTD7nSP+v3conDhpEQysCTi8nyPDMeq3Ln3XZ5Pi7MUxEXp+EolYzGyuqwO3vt1mfe3QIjLRZMToVUzONPSgzPN3aN+/5cnW2B3upEVH4HJKdSAQgq4ufNpaRNYdvSl4Li5e1l+CrUTlxAykglBmZVhQlKMHt0255jCTJ8dJwNLajjl/uWpllHn07X12Pki+peSgSUZl3nnz6dj2OhsP9EMp5vFxKQo5CZGCT00IgBiDFrMy/WkPo1lo8MbWFPJwJKKC89KhF6jQm1HL8oazaN6L8uy5GyQCWQkE4KiUjG4bKpnUhcfqR/Ve6vbLDhU0wmGAS6ZSopBKvLTYpARGwGrw42tZaNboP93tAFu1lOZJCM2IkgjJEaCi+jsOt2K9h77qN778eGGPvcgpIEzjkarRx0uN7Yc88hwEclQMiJ0av7gcrF3TgXKtzWdqPOmHc6n8n2SQkYyITjXzEoHAHx8uB4OV+ApFx8eqgMAnJ+bgOQYQ1DGRowMwzC4ZlYaAOCDb+tG9d4PDnquv2Z2muDjIgJnYlI08tOMcLpZfHwk8AW62+bkvc/XeucxIQ2LZ6ZBxXhqXle3BZ5b/uWpFrRbHEiM1tG5Donh9OCH39aNKuWC06OLpqVQ2qHEKM5Ibm9vx9KlS2EymWAymbB06VJ0dHQM+x6WZbFmzRqkp6cjIiICF198MY4ePTrktVdddRUYhsH7778v/AcIAwonJiAxWo92i2NUVS44xbBkDi3OUnPtbI8MPi1tCrjNeGOXFbu9XdrIwJKeJV4ZfvBtbcDv2XK0ATanG3mJUXylGkIako0GnO9tSjGazeqHXj169cw0aKgVtaQsmpYKvUaF8pYeHKntCug9LjeLj7wOI24OE9KhuBl066234uDBg/jkk0/wySef4ODBg1i6dOmw73n66aexfv16PP/889i7dy9SU1OxaNEimM0D84Q2bNhAOVzjRK3yeSLf3lcT0HuO1nXieIMZWjWDq2akBnN4RABMTzciLykKdqcbHx0KLNz73oFasCxwTnYssuIjgzxCYiSu9Xqx9pS3BeyJfGd/jfe96aQHZQBnJL2zvyYgT6TZ6sAnRz2RA3I2SE+0XsMfhH57X3VA7/nyVAuazDaYIrS4aHJSMIdHBICijOTS0lJ88skneOWVV1BYWIjCwkK8/PLL+Oijj1BWVjboe1iWxYYNG/Doo4/ihhtuwIwZM/DXv/4VFosF//jHP/pc++2332L9+vV49dVXxfg4Ic335mYB8OSoNgVQb/eN3ZUAgCump1IbYxnAMAy+f65Hhn/fVTniAu1ys3hzj0eG3z83O+jjI0YmMy4SCyYlgmWBN/dUjXj9qaZufHWqFQwDfHdupggjJEbi6llpiNKpcaa5B7tOj9zi+L0DtbDYXTgrORrnZFMTGDlws1ePvru/Fj22kVvF/32XR4/ecE4GdBpFmWghiUbqAYyGXbt2wWQyYd68efxr559/PkwmE3bu3IkpU6YMeE95eTkaGhpQVFTEv6bX67Fw4ULs3LkTd999NwDAYrHglltuwfPPP4/U1MA8mTabDTabjf93V5cnnOJwOOBwBBaiHg/cM8R41miZlBSBguxY7KvqwBu7KnDfpROHvLar14H3D3hCwrecmyHLzxMs5CzD62en4g9bTuBYfRf2nmnB2dmxQ177RVkzqtt6YYrQ4MppSbL8PMFCzjK8ZW4mdpxswea9Vbh3YQ70w+Q3/m1nOQDgkslJSInWyvLzBAM5y8+gBq6bk4Z/fF2D13eW49wJpiGvZVkWf9tZAQC49dxMOJ0jG2ShgpxlOG+CCRPiI1HZZsE7+6pwi9doHoya9l587q3w9P0CWgvFeN5IKMpIbmhoQHLywKoHycnJaGgY/HAK93pKSt9TvikpKaisrOT//eCDD2L+/Pm47rrrAh7PunXrsHbt2gGvb9myBZGR4oWbS0pKRHvWaJiuZ7AParyy4xQyustgGOLX9nG1Cr0OFdIiWTQf3Y3iY+KOUw7IVYZz4lTY06zCmn/vxt35gx/CZFlgwxE1AAZnx9rxxaf/E3eQMkGOMnSxQJxOjXaLA7/62xYsTBs8ItBlB/55wCPDyaoGFBcXiztQGSBH+QFAtg0ANCg51ohNbxcjbYil5dtWBqea1dCrWEQ1HUFx8RExhykL5CrDc4wMKtvU+OP/jiG68TCGShXffEYFN6vCZJMbx/duw3FxhykLxJKhxRJYCposjOQ1a9YMamz6s3fvXgAYNE+OZdkR8+f6/93/PR988AE+//xzHDhwYDTDxurVq7Fq1Sr+311dXcjKykJRURGMxuAfenE4HCgpKcGiRYug1WqD/rzRUuRy48vnd+JMiwW10VMG9Sa3W+x4ZP0OAC6svnZ22OUjy12G01p7cOVzO3GsQ4W0GecP6k3+oqwZFbsPwKBV4TdLFyI5Ri/+QCVE7jLsSa7BYx8cw/aWCDy+9EJE6gaq/Sf/exwOdxVmZ5qw6pbzwiofWe7yA4ADjoP437Em7Hek44XFcwb83eVm8fwLOwH0YNlFE3HDZWeJPkYpkbsML7Y7sePZL9HSbUd3ysxBvclVbRb8bM9XAFg8ftN5OC8nvCqTiC1DLvI/ErIwku+99158//vfH/aanJwcHDp0CI2NA4vjNzc3D/AUc3CpEw0NDUhL85Wlampq4t/z+eef4/Tp04iNje3z3htvvBELFizA1q1bB723Xq+HXj/QINBqtaJOVLGfFyhaLfDgoim4758H8Ocd5bjunExMTOrb/WndJ0fRY3NhWpoR18zOhEoVPouzP3KV4aTUWNx0TiY2f1ONX31Yiv/cewH0Gl/IvsfmxK+LPecBbi/MQUZ8+Hb3kqsMvz9vAl7+sgJVbRY8+9kZrFkyvc/fD9V04M2vPYeKHrpiCnS68DwTIFf5AcDPrpiKLaVN2HKsCTtOt+HSqX3Xu1e3ncbJph4YDRr8ZOFZsv0cwUauMjRptbjnkrOw9sNjWP/pKVw5Ix3JRl+ZU5Zlseaj43C6WSyYlIgLJoVvfWuxZBjoM2SRFZ6YmIipU6cO+5/BYEBhYSE6Ozvx9ddf8+/ds2cPOjs7MX/+/EHvnZubi9TU1D4ufLvdjm3btvHvefjhh3Ho0CEcPHiQ/w8Ann32Wbz22mvB++BhwDWz0rBgUiJsTjceeOsAuvzKif1rbzXeO1ALFQP8+jszwtZAljsPXTEF8VE6HG8w49cflfKH+FxuFo+8dxhVbRakmwy459Lw8l4pBa1ahSeu8xjGr++swCd+dZNbum1YufkgXG4WV89M45sfEPJickoM7rwgFwDw87cPo7K1h//bNxVt+MOWEwCARxbnwxQhPyORAH5w/gRMTzeiw+LAys0H+3QzfXHraew42QK9RoXHr50+zF0IsZGFJzlQ8vPzceWVV+Kuu+7Cn//8ZwDAT37yE1xzzTV9Du1NnToV69atw3e+8x0wDIOVK1fiqaeewqRJkzBp0iQ89dRTiIyMxK233grA420e7LBednY2cnNzxflwIQrDMPjdjbOw+LkdOFLbhe9t3IW7FuTheEMXXvnSc1DonkvOopPYMiYpRo+nvjMTy9/Yh7/vrkRLtw2LZ6bhnf012FrWDLWKwTPfnQ2jgRZnuXLxlGQsPX8C/r67Evf+Yz9+evFEZMVH4qWtp1He0oMUox5PXj8jrNIslMZDV0zBjpMtKGs047sbd+G+yyahx+bEc5+dhN3lxuX5KXwlBUJ+aNUqrP/eHFz/wlfYeboVt768G7fPz8HuM634pzeS88jifJyVHL7RODmiKCMZAN58803cf//9fLWKJUuW4Pnnn+9zTVlZGTo7O/l///znP0dvby9WrFiB9vZ2zJs3D1u2bEFMTIyoYw9X0mMj8OayeVi66WscbzDjZ//+lv/bDwsnYNWiyRKOjgiEK2ek4nc3zsTD7x7Gx0ca+C5uGhWD5245G/PJAyl7Hr92GrptTrx3oBZ/+vwU/3qq0YB/3DUP8VHhmWahFAxaNf6+7Dzc9vIenGzqxmPv+w7mLZiUiD/dcjZtcmTOlNQYvPbjc3Hn63uxv6oD+6sO8n978PLJuH1+jmRjIwZHcUZyfHw83njjjWGv6V/TlWEYrFmzBmvWrAn4OaNpIUmMzPR0Ez5ZuQCv7CjH/sp2GCO0uG1eNi6dmkyKXSHcfG42pqeb8PKOM6ht70VOYhR+clEeJqfQZlMJaNQq/OG7s7FoWgo2762Gxe7E+XkJuOOCXMSRgawIkmMMeP+eC/D33ZX4/HgTtGoG183OwHfOyYCWuuspgvPzEvDJyovw8o4zOFbXhYRoHX58QS7fXZGQF4ozkgnlkhxjwCOL86UeBjEOZmSY8Mfvny31MIgxolIxWDwzDYtnpo18MSFLovQaLF84EcsXDl17npA3WfGReOK6GVIPgwgA2noSBEEQBEEQRD/ISCYIgiAIgiCIfpCRTBAEQRAEQRD9ICOZIAiCIAiCIPpBRjJBEARBEARB9IOMZIIgCIIgCILoBxnJBEEQBEEQBNEPMpIJgiAIgiAIoh9kJBMEQRAEQRBEP8hIJgiCIAiCIIh+kJFMEARBEARBEP3QSD2AUIJlWQBAV1eXKM9zOBywWCzo6uqCVqsV5ZmEsJAMlQ/JUNmQ/JQPyVD5iC1Dzk7j7LahICNZQMxmMwAgKytL4pEQBEEQBEEQw2E2m2EymYb8O8OOZEYTAeN2u1FXV4eYmBgwDBP053V1dSErKwvV1dUwGo1Bfx4hPCRD5UMyVDYkP+VDMlQ+YsuQZVmYzWakp6dDpRo685g8yQKiUqmQmZkp+nONRiMpBoVDMlQ+JENlQ/JTPiRD5SOmDIfzIHPQwT2CIAiCIAiC6AcZyQRBEARBEATRDzKSFYxer8fjjz8OvV4v9VCIMUIyVD4kQ2VD8lM+JEPlI1cZ0sE9giAIgiAIgugHeZIJgiAIgiAIoh9kJBMEQRAEQRBEP8hIJgiCIAiCIIh+kJFMEARBEARBEP0gI1nBvPjii8jNzYXBYEBBQQF27Ngh9ZAIANu3b8e1116L9PR0MAyD999/v8/fWZbFmjVrkJ6ejoiICFx88cU4evRon2tsNhvuu+8+JCYmIioqCkuWLEFNTY2InyJ8WbduHc4991zExMQgOTkZ119/PcrKyvpcQzKUNy+99BJmzZrFNyYoLCzExx9/zP+d5Kcs1q1bB4ZhsHLlSv41kqG8WbNmDRiG6fNfamoq/3elyI+MZIWyefNmrFy5Eo8++igOHDiABQsW4KqrrkJVVZXUQwt7enp6MHv2bDz//POD/v3pp5/G+vXr8fzzz2Pv3r1ITU3FokWLYDab+WtWrlyJ9957D2+99Ra+/PJLdHd345prroHL5RLrY4Qt27Ztwz333IPdu3ejpKQETqcTRUVF6Onp4a8hGcqbzMxM/Pa3v8U333yDb775Bpdeeimuu+46fhEm+SmHvXv34i9/+QtmzZrV53WSofyZPn066uvr+f8OHz7M/00x8mMJRXLeeeexy5cv7/Pa1KlT2YcffliiERGDAYB97733+H+73W42NTWV/e1vf8u/ZrVaWZPJxG7cuJFlWZbt6OhgtVot+9Zbb/HX1NbWsiqViv3kk09EGzvhoampiQXAbtu2jWVZkqFSiYuLY1955RWSn4Iwm83spEmT2JKSEnbhwoXsAw88wLIszUEl8Pjjj7OzZ88e9G9Kkh95khWI3W7Hvn37UFRU1Of1oqIi7Ny5U6JREYFQXl6OhoaGPrLT6/VYuHAhL7t9+/bB4XD0uSY9PR0zZswg+UpAZ2cnACA+Ph4AyVBpuFwuvPXWW+jp6UFhYSHJT0Hcc889uPrqq3H55Zf3eZ1kqAxOnjyJ9PR05Obm4vvf/z7OnDkDQFny04j2JEIwWlpa4HK5kJKS0uf1lJQUNDQ0SDQqIhA4+Qwmu8rKSv4anU6HuLi4AdeQfMWFZVmsWrUKF154IWbMmAGAZKgUDh8+jMLCQlitVkRHR+O9997DtGnT+AWW5Cdv3nrrLezfvx979+4d8Deag/Jn3rx5+Nvf/obJkyejsbERv/71rzF//nwcPXpUUfIjI1nBMAzT598syw54jZAnY5EdyVd87r33Xhw6dAhffvnlgL+RDOXNlClTcPDgQXR0dOCdd97B7bffjm3btvF/J/nJl+rqajzwwAPYsmULDAbDkNeRDOXLVVddxf//mTNnorCwEBMnTsRf//pXnH/++QCUIT9Kt1AgiYmJUKvVA3ZTTU1NA3ZmhLzgTvcOJ7vU1FTY7Xa0t7cPeQ0RfO677z588MEH+OKLL5CZmcm/TjJUBjqdDmeddRbmzp2LdevWYfbs2fjjH/9I8lMA+/btQ1NTEwoKCqDRaKDRaLBt2zY899xz0Gg0vAxIhsohKioKM2fOxMmTJxU1B8lIViA6nQ4FBQUoKSnp83pJSQnmz58v0aiIQMjNzUVqamof2dntdmzbto2XXUFBAbRabZ9r6uvrceTIEZKvCLAsi3vvvRfvvvsuPv/8c+Tm5vb5O8lQmbAsC5vNRvJTAJdddhkOHz6MgwcP8v/NnTsXt912Gw4ePIi8vDySocKw2WwoLS1FWlqasuagaEcECUF56623WK1Wy27atIk9duwYu3LlSjYqKoqtqKiQemhhj9lsZg8cOMAeOHCABcCuX7+ePXDgAFtZWcmyLMv+9re/ZU0mE/vuu++yhw8fZm+55RY2LS2N7erq4u+xfPlyNjMzk/3000/Z/fv3s5deeik7e/Zs1ul0SvWxwoaf/vSnrMlkYrdu3crW19fz/1ksFv4akqG8Wb16Nbt9+3a2vLycPXToEPvII4+wKpWK3bJlC8uyJD8l4l/dgmVJhnLnZz/7Gbt161b2zJkz7O7du9lrrrmGjYmJ4W0UpciPjGQF88ILL7ATJkxgdTode8455/Alqghp+eKLL1gAA/67/fbbWZb1lL95/PHH2dTUVFav17MXXXQRe/jw4T736O3tZe+99142Pj6ejYiIYK+55hq2qqpKgk8TfgwmOwDsa6+9xl9DMpQ3d9xxB68bk5KS2Msuu4w3kFmW5KdE+hvJJEN5c/PNN7NpaWmsVqtl09PT2RtuuIE9evQo/3elyI9hWZYVz29NEARBEARBEPKHcpIJgiAIgiAIoh9kJBMEQRAEQRBEP8hIJgiCIAiCIIh+kJFMEARBEARBEP0gI5kgCIIgCIIg+kFGMkEQBEEQBEH0g4xkgiAIgiAIgugHGckEQRAEQRAE0Q8ykgmCIMKcNWvWYM6cOVIPgyAIQlZQxz2CIIgQhmGYYf9+++234/nnn4fNZkNCQoJIoyIIgpA/ZCQTBEGEMA0NDfz/37x5M371q1+hrKyMfy0iIgImk0mKoREEQcgaSrcgCIIIYVJTU/n/TCYTGIYZ8Fr/dIsf/ehHuP766/HUU08hJSUFsbGxWLt2LZxOJ/7v//4P8fHxyMzMxKuvvtrnWbW1tbj55psRFxeHhIQEXHfddaioqBD3AxMEQQgEGckEQRDEAD7//HPU1dVh+/btWL9+PdasWYNrrrkGcXFx2LNnD5YvX47ly5ejuroaAGCxWHDJJZcgOjoa27dvx5dffono6GhceeWVsNvtEn8agiCI0UNGMkEQBDGA+Ph4PPfcc5gyZQruuOMOTJkyBRaLBY888ggmTZqE1atXQ6fT4auvvgIAvPXWW1CpVHjllVcwc+ZM5Ofn47XXXkNVVRW2bt0q7YchCIIYAxqpB0AQBEHIj+nTp0Ol8vlRUlJSMGPGDP7farUaCQkJaGpqAgDs27cPp06dQkxMTJ/7WK1WnD59WpxBEwRBCAgZyQRBEMQAtFptn38zDDPoa263GwDgdrtRUFCAN998c8C9kpKSgjdQgiCIIEFGMkEQBDFuzjnnHGzevBnJyckwGo1SD4cgCGLcUE4yQRAEMW5uu+02JCYm4rrrrsOOHTtQXl6Obdu24YEHHkBNTY3UwyMIghg1ZCQTBEEQ4yYyMhLbt29HdnY2brjhBuTn5+OOO+5Ab28veZYJglAk1EyEIAiCIAiCIPpBnmSCIAiCIAiC6AcZyQRBEARBEATRDzKSCYIgCIIgCKIfZCQTBEEQBEEQRD/ISCYIgiAIgiCIfpCRTBAEQRAEQRD9ICOZIAiCIAiCIPpBRjJBEARBEARB9IOMZIIgCIIgCILoBxnJBEEQBEEQBNEPMpIJgiAIgiAIoh//D8/3GSZvpXK3AAAAAElFTkSuQmCC",
- "text/plain": [
- "