-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp1_2.py
105 lines (82 loc) · 3.64 KB
/
p1_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
interact_df = pd.read_csv("Generated Files/Interaction between Pedestrians and Vehicles.csv")
vehicles_df = pd.read_csv("recorded_trackfiles/DR_DEU_Roundabout_OF/vehicle_tracks_001.csv", engine="pyarrow")
pedes_df = pd.read_csv("recorded_trackfiles/DR_DEU_Roundabout_OF/pedestrian_tracks_001.csv", engine="pyarrow")
interact_2 = pd.DataFrame()
frame = 0
ped = "P1"
veh = 2
curr_veh_df = vehicles_df[vehicles_df['track_id'] == veh]
curr_ped_df = pedes_df[pedes_df['track_id'] == ped]
ped_ts = np.array(curr_ped_df['timestamp_ms']).astype(int)
veh_ts = np.array(curr_veh_df['timestamp_ms']).astype(int)
all_ts = np.sort(np.unique(np.concatenate([veh_ts,ped_ts])))
all_interact_ts = (interact_df.loc[(interact_df['Pedestrian TrackID'] == ped) & (interact_df['Vehicle TrackID'] == veh), 'Timestamp']).values
for ts in all_ts:
match_ts_veh_row = curr_veh_df.loc[(curr_veh_df['timestamp_ms'] == ts)]
match_ts_veh_row = match_ts_veh_row.squeeze()
if match_ts_veh_row.empty:
veh_x = veh_y = veh_vx = veh_vy = veh_speed = np.nan
else:
veh_x = match_ts_veh_row.x
veh_y = match_ts_veh_row.y
veh_vx = match_ts_veh_row.vx
veh_vy = match_ts_veh_row.vy
veh_speed = math.sqrt(veh_vx**2 + veh_vy**2)
match_ts_ped_row = curr_ped_df.loc[(curr_ped_df['timestamp_ms'] == ts)]
match_ts_ped_row = match_ts_ped_row.squeeze()
if match_ts_ped_row.empty:
ped_x = ped_y = ped_vx = ped_vy = ped_speed = np.nan
else:
ped_x = match_ts_ped_row.x
ped_y = match_ts_ped_row.y
ped_vx = match_ts_ped_row.vx
ped_vy = match_ts_ped_row.vy
ped_speed = math.sqrt(ped_vx**2 + ped_vy**2)
if ts in all_interact_ts:
interaction = 1
else:
interaction = 0
if not (match_ts_ped_row.empty and match_ts_veh_row.empty):
distance = math.sqrt((veh_x - ped_x)**2 + (veh_y - ped_y)**2)
frame+=1
append_row = pd.DataFrame([
{
'frame_id': frame,
'Timestamp': ts,
'Pedestrian TrackID': ped,
'x': ped_x,
'y': ped_y,
'vx': ped_vx,
'vy': ped_vy,
'Pedestrian Speed': ped_speed,
'interaction': interaction,
'Vehicle TrackID': veh,
'veh x': veh_x,
'veh y': veh_y,
'veh vx': veh_vx,
'veh vy': veh_vy,
'Vehicle Speed': veh_speed,
'distance': distance
}
])
interact_2 = pd.concat([interact_2, append_row])
y_min = interact_2['Vehicle Speed'].min() - 0.1
y_max = interact_2['Vehicle Speed'].max() + 0.1
new_interact_2 = interact_2.dropna(how='any')
new_interact_2.plot(x="Timestamp", y=["Pedestrian Speed", "Vehicle Speed"], kind="line")
new_interact_2.plot(x="Timestamp", y=["Pedestrian Speed", "Vehicle Speed"], kind="bar")
plt.title('Speed: Both Vehicle and Pedestrian Present at a TS')
plt.ylim(y_min, y_max)
y_min = interact_2['distance'].min() - 1
y_max = interact_2['distance'].max() + 5
new_interact_2 = interact_2.dropna(how='any')
new_interact_2.plot(x="Timestamp", y=["distance"], kind="line")
new_interact_2.plot(x="Timestamp", y=["distance"], kind="bar")
plt.title('Distance: When both Vehicle and Pedestrian Present at a Timestamp')
plt.ylim(y_min, y_max)
plt.show()
del veh_x, veh_y, veh_vx, veh_vy, veh_speed, ped_x, ped_y, ped_vx, ped_vy, ped_speed, append_row, distance, ts, frame, match_ts_ped_row, match_ts_veh_row, interaction