-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
executable file
·258 lines (218 loc) · 9.59 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
import yaml
import numpy as np
from PIL import Image
import rembg
import importlib
import torch
import tempfile
import json
#import spaces
from core.models import DiT_models
from core.diffusion import create_diffusion
from core.utils.dinov2 import Dinov2Model
from core.utils.math_utils import unnormalize_params
from huggingface_hub import hf_hub_download
# Setup PyTorch:
device = torch.device('cuda')
# Define the cache directory for model files
#model_cache_dir = './ckpts/'
#os.makedirs(model_cache_dir, exist_ok=True)
# load generators & models
generators_choices = ["chair", "table", "vase", "basket", "flower", "dandelion"]
factory_names = ["ChairFactory", "TableDiningFactory", "VaseFactory", "BasketBaseFactory", "FlowerFactory", "DandelionFactory"]
generator_path = "./core/assets/"
generators, configs, models = [], [], []
for category, factory in zip(generators_choices, factory_names):
# load generator
module = importlib.import_module(f"core.assets.{category}")
gen = getattr(module, factory)
generator = gen(0)
generators.append(generator)
# load configs
config_path = f"./configs/demo/{category}_demo.yaml"
with open(config_path) as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
configs.append(cfg)
# load models
latent_size = cfg["num_params"]
model = DiT_models[cfg["model"]](input_size=latent_size).to(device)
# load a custom DiT checkpoint from train.py:
# download the checkpoint if not found:
if not os.path.exists(cfg["ckpt_path"]):
model_dir, model_name = os.path.dirname(cfg["ckpt_path"]), os.path.basename(cfg["ckpt_path"])
os.makedirs(model_dir, exist_ok=True)
checkpoint_path = hf_hub_download(repo_id="TencentARC/DI-PCG",
local_dir=model_dir, filename=model_name)
print("Downloading checkpoint {} from Hugging Face Hub...".format(model_name))
print("Loading model from {}".format(cfg["ckpt_path"]))
state_dict = torch.load(cfg["ckpt_path"], map_location=lambda storage, loc: storage)
if "ema" in state_dict: # supports checkpoints from train.py
state_dict = state_dict["ema"]
model.load_state_dict(state_dict)
model.eval()
models.append(model)
diffusion = create_diffusion(str(cfg["num_sampling_steps"]))
# feature model
feature_model = Dinov2Model()
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background):
# resize
if input_image.size[0] != 256 or input_image.size[1] != 256:
input_image = input_image.resize((256, 256))
# remove background
if do_remove_background:
processed_image = rembg.remove(np.array(input_image))
# white background
else:
processed_image = input_image
return processed_image
#@spaces.GPU
def sample(image, seed, category):
# seed
np.random.seed(seed)
torch.manual_seed(seed)
# generator & model
idx = generators_choices.index(category)
generator, cfg, model = generators[idx], configs[idx], models[idx]
# encode condition image feature
# convert RGBA images to RGB, white background
input_image_np = np.array(image)
mask = input_image_np[:, :, -1:] > 0
input_image_np = input_image_np[:, :, :3] * mask + 255 * (1 - mask)
image = input_image_np.astype(np.uint8)
img_feat = feature_model.encode_batch_imgs([np.array(image)], global_feat=False)
# Create sampling noise:
latent_size = int(cfg['num_params'])
z = torch.randn(1, 1, latent_size, device=device)
y = img_feat
# No classifier-free guidance:
model_kwargs = dict(y=y)
# Sample target params:
samples = diffusion.p_sample_loop(
model.forward, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
)
samples = samples[0].squeeze(0).cpu().numpy()
# unnormalize params
params_dict = generator.params_dict
params_original = unnormalize_params(samples, params_dict)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False).name
params_fpath = tempfile.NamedTemporaryFile(suffix=f".npy", delete=False).name
np.save(params_fpath, params_original)
print(mesh_fpath)
print(params_fpath)
# generate 3D using sampled params - TODO: this is a hacky way to go through PCG pipeline, avoiding conflict with gradio
command = f"python ./scripts/generate.py --config ./configs/demo/{category}_demo.yaml --output_path {mesh_fpath} --seed {seed} --params_path {params_fpath}"
os.system(command)
return mesh_fpath
import gradio as gr
_HEADER_ = '''
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/DI-PCG' target='_blank'><b>DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation</b></a></h2>
**DI-PCG** is a diffusion model which directly generates a procedural generator's parameters from a single image, resulting in high-quality 3D meshes.
Code: <a href='https://github.com/TencentARC/DI-PCG' target='_blank'>GitHub</a>. Techenical report: <a href='' target='_blank'>ArXiv</a>.
❗️❗️❗️**Important Notes:**
- DI-PCG trains a diffusion model for each procedural generator. Current supported generators are: Chair, Table, Vase, Basket, Flower, Dandelion from <a href="https://github.com/princeton-vl/infinigen">Infinigen</a>.
- The diversity of the generated meshes are strictly bounded by the procedural generators. For out-of-domain shapes, DI-PCG may only provide closest approximations.
'''
_CITE_ = r"""
If DI-PCG is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/DI-PCG' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/DI-PCG?style=social)](https://github.com/TencentARC/DI-PCG)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
```
📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file]() for details.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b></b>.
"""
def update_examples(category):
samples = [[os.path.join(f"examples/{category}", img_name)]
for img_name in sorted(os.listdir(f"examples/{category}"))]
print(samples)
return gr.Dataset(samples=samples)
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
with gr.Row(variant="panel"):
with gr.Column():
# select the generator category
with gr.Row():
with gr.Group():
generator_category = gr.Radio(
choices=[
"chair",
"table",
"vase",
"basket",
"flower",
"dandelion",
],
value="chair",
label="category",
)
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGB",
sources='upload',
width=256,
height=256,
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(
label="Processed Image",
image_mode="RGBA",
width=256,
height=256,
type="pil",
interactive=False
)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=False
)
sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
examples = gr.Examples(
[os.path.join(f"examples/chair", img_name) for img_name in sorted(os.listdir(f"examples/chair"))],
inputs=[input_image],
label="Examples",
examples_per_page=5
)
generator_category.change(update_examples, generator_category, outputs=examples.dataset)
with gr.Column():
with gr.Row():
with gr.Tab("Geometry"):
output_model_obj = gr.Model3D(
label="Output Model",
#width=768,
display_mode="wireframe",
interactive=False
)
#with gr.Tab("Textured"):
# output_model_obj = gr.Model3D(
# label="Output Model (STL Format)",
# #width=768,
# interactive=False,
# )
# gr.Markdown("Note: Texture and Material are randomly assigned by the procedural generator.")
gr.Markdown(_CITE_)
mv_images = gr.State()
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, do_remove_background],
outputs=[processed_image],
).success(
fn=sample,
inputs=[processed_image, sample_seed, generator_category],
outputs=[output_model_obj],
)
demo.queue(max_size=10)
demo.launch(server_name="0.0.0.0", server_port=43839)