-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathastrohead.py
99 lines (77 loc) · 3.33 KB
/
astrohead.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import cv2
import mediapipe as mp
import numpy as np
from flask import Flask, request, jsonify, render_template, Response
import json
import platform
from typing import Optional
import traceback
# decl glob
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
app = Flask(__name__)
img1 = cv2.imread("/Users/dhruvroongta/Downloads/helmet_redscreen.png")
camid = -1
if platform.system() == "Darwin":
camid = 0
cap = cv2.VideoCapture(camid)
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
while cap.isOpened():
ret, frame = cap.read()
# Recolor image to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
# Make detection
results = pose.process(image)
# Recolor back to BGR
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
img_copy = None
# Extract landmarks
try:
landmarks = results.pose_landmarks.landmark
# Get coordinates
nose = landmarks[mp_pose.PoseLandmark.NOSE.value]
left_ear = landmarks[mp_pose.PoseLandmark.LEFT_EAR.value]
right_ear = landmarks[mp_pose.PoseLandmark.RIGHT_EAR.value]
distance = np.sqrt(
((right_ear.x - left_ear.x) ** 2) + ((right_ear.y - left_ear.y) ** 2))
optimal_distance = 0.058 # Desired optimal distance
scaling_factor = distance/optimal_distance # Calculate the scaling factor
if scaling_factor <= 0:
scaling_factor = 0.001
print(scaling_factor)
# Scale the image1 (img1) based on the calculated scaling factor
img_copy = image.copy()
# Scale the image1 (img1) based on the calculated scaling factor
print(img1.shape)
scaled_width = int(133 * float(scaling_factor))
scaled_height = int(133 * float(scaling_factor))
print(scaled_height,scaled_width)
scaled_img1 = cv2.resize(img1, (scaled_width, scaled_height), interpolation=cv2.INTER_CUBIC)
nose_x, nose_y = int(nose.x * image.shape[1]), int(nose.y * image.shape[0])
nose_y = int(0.9 * nose_y)
crop_size = int(scaled_img1.shape[0]/2)
print(scaled_img1.shape)
crop_x1, crop_x2 = max(0, nose_x - crop_size), min(image.shape[1], nose_x + crop_size)
crop_y1, crop_y2 = max(0, nose_y - crop_size), min(image.shape[0], nose_y + crop_size)
# Get the corresponding region from img1
cropped_region = scaled_img1[0:crop_size * 2, 0:crop_size * 2]
red_mask = cropped_region[:, :, 2] == 255
img_copy[crop_y1:crop_y2, crop_x1:crop_x2][~red_mask] = cropped_region[~red_mask]
except AttributeError as ae:
pass
except Exception as e:
print(traceback.format_exc())
try:
cv2.imshow('Mediapipe Feed', img_copy)
except Exception:
pass
if cv2.waitKey(10) & 0xFF == ord('q'):
break
ret,buffer = cv2.imencode('.jpg',image)
frame = buffer.tobytes()
# yield(b'--frame\r\n'
# b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
cap.release()
cv2.destroyAllWindows()