forked from HYCOM/HYCOM-src
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmxpwp.F90
813 lines (812 loc) · 24.6 KB
/
mxpwp.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
#if defined(ROW_LAND)
#define SEA_P .true.
#define SEA_U .true.
#define SEA_V .true.
#elif defined(ROW_ALLSEA)
#define SEA_P allip(j).or.ip(i,j).ne.0
#define SEA_U alliu(j).or.iu(i,j).ne.0
#define SEA_V alliv(j).or.iv(i,j).ne.0
#else
#define SEA_P ip(i,j).ne.0
#define SEA_U iu(i,j).ne.0
#define SEA_V iv(i,j).ne.0
#endif
subroutine mxpwp(m,n)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
! --- hycom version 2.1
!
integer m,n
!
! -------------------------------------------------------------------
! --- price-weller-pinkel dynamical instability vertical mixing model
! -------------------------------------------------------------------
!
! --- background diapycnal mixing is provided by the explicit diapycnal
! --- mixing model, subroutine diapf2
!
integer i,j,k
real delp,sigmlj
!
# include "stmt_fns.h"
!
call xctilr(u( 1-nbdy,1-nbdy,1,n),1,kk, 1,1, halo_uv)
call xctilr(v( 1-nbdy,1-nbdy,1,n),1,kk, 1,1, halo_vv)
call xctilr(p( 1-nbdy,1-nbdy,2 ),1,kk, 1,1, halo_ps)
!
! --- diffisuvity/viscosity calculation
!
!$OMP PARALLEL DO PRIVATE(j) &
!$OMP SHARED(m,n) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
call mxpwpaj(m,n, j)
enddo
!$OMP END PARALLEL DO
!
! --- final velocity mixing at u,v points
!
call xctilr(vcty(1-nbdy,1-nbdy,1),1,kk, 1,1, halo_ps)
call xctilr(dpbl(1-nbdy,1-nbdy), 1, 1, 1,1, halo_ps)
!
!$OMP PARALLEL DO PRIVATE(j) &
!$OMP SHARED(m,n) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
call mxpwpbj(m,n, j)
enddo
!$OMP END PARALLEL DO
!
! --- mixed layer diagnostics
!
if (diagno) then
!
! --- diagnose new mixed layer depth based on density jump criterion
!$OMP PARALLEL DO PRIVATE(j,i,k,sigmlj) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
!
! --- depth of mixed layer base set to interpolated depth where
! --- the density jump is equivalent to a tmljmp temperature jump.
! --- this may not vectorize, but is used infrequently.
sigmlj = -tmljmp*dsigdt(temp(i,j,1,n),saln(i,j,1,n))
sigmlj = max(sigmlj,tmljmp*0.1) !cold-water fix
do k=2,kk
if (p(i,j,k+1).ge.p(i,j,kk+1)-onem) then
dpmixl(i,j,n) = p(i,j,k+1)
exit !k
elseif ((th3d(i,j,k,n)-th3d(i,j,1,n)).ge.sigmlj) then
dpmixl(i,j,n)=max(dp(i,j,1,n), &
p(i,j,k) + dp(i,j,k,n)* &
(th3d(i,j,1,n)+sigmlj-th3d(i,j,k-1,n))/ &
(th3d(i,j,k,n) +epsil-th3d(i,j,k-1,n)) )
exit
endif
enddo !k
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
!
call xctilr(p( 1-nbdy,1-nbdy,2),1,kk, 1,1, halo_ps)
call xctilr(dpmixl(1-nbdy,1-nbdy,n),1, 1, 1,1, halo_ps)
!
! --- calculate bulk mixed layer t, s, theta
!
!$OMP PARALLEL DO PRIVATE(j,i,k,delp) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_P) then
dpmixl(i,j,m)=dpmixl(i,j,n)
tmix(i,j)=temp(i,j,1,n)*dp(i,j,1,n)
smix(i,j)=saln(i,j,1,n)*dp(i,j,1,n)
do k=2,kk
delp=min(p(i,j,k+1),dpmixl(i,j,n)) &
-min(p(i,j,k ),dpmixl(i,j,n))
tmix(i,j)=tmix(i,j)+delp*temp(i,j,k,n)
smix(i,j)=smix(i,j)+delp*saln(i,j,k,n)
enddo !k
tmix(i,j)=tmix(i,j)/dpmixl(i,j,n)
smix(i,j)=smix(i,j)/dpmixl(i,j,n)
thmix(i,j)=sig(tmix(i,j),smix(i,j))-thbase
endif !ip
enddo !i
enddo !j
!$OMP END PARALLEL DO
!
! --- calculate bulk mixed layer u
!
!$OMP PARALLEL DO PRIVATE(j,i,k,delp) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_U) then
umix(i,j)=u(i,j,1,n)*2.*dpu(i,j,1,n)
do k=2,kk
delp= &
(min(p(i,j,k+1)+p(i-1,j,k+1), &
dpmixl(i,j,n)+dpmixl(i-1,j,n)) &
-min(p(i,j,k )+p(i-1,j,k ), &
dpmixl(i,j,n)+dpmixl(i-1,j,n)))
umix(i,j)=umix(i,j)+delp*u(i,j,k,n)
enddo !k
umix(i,j)=umix(i,j)/(dpmixl(i,j,n)+dpmixl(i-1,j,n))
endif !iu
enddo !i
enddo !j
!$OMP END PARALLEL DO
!
! --- calculate bulk mixed layer v
!
!$OMP PARALLEL DO PRIVATE(j,i,k,delp) &
!$OMP SCHEDULE(STATIC,jblk)
do j=1,jj
do i=1,ii
if (SEA_V) then
vmix(i,j)=v(i,j,1,n)*2.*dpv(i,j,1,n)
do k=2,kk
delp= &
(min(p(i,j,k+1)+p(i,j-1,k+1), &
dpmixl(i,j,n)+dpmixl(i,j-1,n)) &
-min(p(i,j,k )+p(i,j-1,k ), &
dpmixl(i,j,n)+dpmixl(i,j-1,n)))
vmix(i,j)=vmix(i,j)+delp*v(i,j,k,n)
enddo !k
vmix(i,j)=vmix(i,j)/(dpmixl(i,j,n)+dpmixl(i,j-1,n))
endif !iv
enddo !i
enddo !j
!$OMP END PARALLEL DO
endif ! diagno
!
return
end
subroutine mxpwpaj(m,n, j)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n, j
!
! --- calculate viscosity and diffusivity
!
integer i
!
do i=1,ii
if (SEA_P) then
call mxpwpaij(m,n, i,j)
endif !ip
enddo !i
!
return
end
!
subroutine mxpwpbj(m,n, j)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
integer m,n, j
!
! --- final velocity mixing at u,v points
!
integer i
!
do i=1,ii
if (SEA_U) then
call mxpwpbiju(m,n, i,j)
endif !iu
enddo !i
!
do i=1,ii
if (SEA_V) then
call mxpwpbijv(m,n, i,j)
endif !iv
enddo !i
!
return
end
!
subroutine mxpwpaij(m,n, i,j)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
! --- hycom version 2.1
!
integer m,n, i,j
!
! ----------------------------------------------
! --- pwp vertical mixing, single j-row (part A)
! ----------------------------------------------
!
! local variables for pwp mixing
real swfrac(kdm+1) ! fractional surface shortwave radiation flux
!
real t1d(kdm),s1d(kdm),th1d(kdm),tr1d(kdm,mxtrcr), &
dp1d(kdm),p1d(kdm+1),u1d(kdm),v1d(kdm),rig(kdm+1)
!
real dtemp,dsaln,rib,rigf,rig1,rig2,told,sold,trold,uold,vold, &
sflux1,tsum,ssum,trsum,usum,vsum,dpsum,tup,sup,thup, &
alfadt,betads, &
chl,qoneta
!
integer k,k1,k2,k3,k10,kmax,kmlb,kmlb1,kintf,ktr,iter,jrlv
!
# include "stmt_fns.h"
!
! -----------------------------------------------------------
! --- set 1-d arrays and locate deepest mass-containing layer
! -----------------------------------------------------------
!
p1d(1)=0.0
do k=1,kk
t1d (k)=temp(i,j,k,n)
s1d (k)=saln(i,j,k,n)
th1d(k)=sig(t1d(k),s1d(k))-thbase
do ktr= 1,ntracr
tr1d(k,ktr)=tracer(i,j,k,n,ktr)
enddo
dp1d(k)=dp(i,j,k,n)
p1d(k+1)=p1d(k)+dp1d(k)
u1d (k)=0.5*(u(i ,j, k,n)+u(i+1,j ,k,n))
v1d (k)=0.5*(v(i ,j ,k,n)+v(i ,j+1,k,n))
enddo !k
!
do k=kk,1,-1
if (dp1d(k).gt.tencm) then
exit !k
endif
enddo !k
kmax=max(k,2) !always consider at least 2 layers
!
qoneta = 1.0/oneta(i,j,n)
!
! ---------------------------------
! --- distribute surface t,s fluxes
! ---------------------------------
!
! --- forcing of t,s by surface fluxes. flux positive into ocean.
if (pensol) then
! --- shortwave flux penetration depends on kpar or chl or jerlov water type.
if (jerlv0.le.0) then
chl = akpar(i,j,lk0)*wk0+akpar(i,j,lk1)*wk1 &
+akpar(i,j,lk2)*wk2+akpar(i,j,lk3)*wk3
endif
call swfrac_ij(chl,p1d,kdm+1,qonem*oneta(i,j,n), &
jerlov(i,j),swfrac)
endif !pensol
!
do k=1,kk
if (thermo .or. sstflg.gt.0 .or. srelax) then
if (k.eq.1) then
if (pensol) then
sflux1=surflx(i,j)-sswflx(i,j)
dtemp=(sflux1+(1.-swfrac(k+1))*sswflx(i,j))* &
delt1*g*qoneta/(spcifh*max(onemm,dp1d(k)))
if (epmass) then !only actual salt flux
dsaln= salflx(i,j)* &
delt1*g*qoneta/max(onemm,dp1d(k))
else !water flux treated as a virtual salt flux
dsaln=(salflx(i,j)-wtrflx(i,j)*saln(i,j,1,n))* &
delt1*g*qoneta/max(onemm,dp1d(k))
endif
!diag if (i.eq.itest.and.j.eq.jtest) then
!diag write (lp,100) &
!diag nstep,i+i0,j+j0,k,0.,1.-swfrac(k+1),dtemp,dsaln
!diag call flush(lp)
!diag endif
100 format(i9,2i5,i3,'absorbup,dn,dtemp,dsaln ',2f6.3,2f10.6)
else !.not.pensol
dtemp=surflx(i,j)* &
delt1*g*qoneta/(spcifh*max(onemm,dp1d(k)))
if (epmass) then !only actual salt flux
dsaln= salflx(i,j)* &
delt1*g*qoneta/max(onemm,dp1d(k))
else !water flux treated as a virtual salt flux
dsaln=(salflx(i,j)-wtrflx(i,j)*saln(i,j,1,n))* &
delt1*g*qoneta/max(onemm,dp1d(k))
endif
endif
elseif (k.le.kmax) then
if (pensol) then
dtemp=(swfrac(k)-swfrac(k+1))*sswflx(i,j)*delt1*g*qoneta/ &
(spcifh*max(onemm,dp1d(k)))
dsaln=0.
!diag if (i.eq.itest.and.j.eq.jtest) then
!diag write (lp,100) &
!diag nstep,i+i0,j+j0,k,1.-swfrac(k),1.-swfrac(k+1),dtemp
!diag call flush(lp)
!diag endif
else !.not.pensol
dtemp=0.0
dsaln=0.0
endif
else !k.gt.kmax
dtemp=0.0
dsaln=0.0
endif
else !.not.thermo ...
dtemp=0.0
dsaln=0.0
endif !thermo.or.sstflg.gt.0.or.srelax:else
!
t1d(k)= t1d(k)+dtemp
s1d(k)=max(s1d(k)+dsaln,0.0) !must be non-negative
th1d(k)=sig(t1d(k),s1d(k))-thbase
enddo !k
!
! ----------------------------------------------
! --- Don't use PWP when relaxing to climatology
! ----------------------------------------------
!
if (rmu(i,j).ne.0.0) then
kmlb=kmax
do k=2,kmax
if (p1d(k).gt.thkmin*onem) then
kmlb=k-1
exit !k
endif
enddo !k
dpbl(i,j)=p1d(kmlb+1)
do k=1,kmax
temp(i,j,k,n)=t1d(k)
saln(i,j,k,n)=s1d(k)
th3d(i,j,k,n)=sig(t1d(k),s1d(k))-thbase
enddo !k
return
endif
!
! ------------------------------------------
! --- relieve mixed layer static instability
! ------------------------------------------
!
kmlb=1
tsum=t1d(1)*dp1d(1)
ssum=s1d(1)*dp1d(1)
dpsum=dp1d(1)
do k=2,kmax
if (locsig) then
tup=tsum/dpsum
sup=ssum/dpsum
alfadt=0.5*(dsiglocdt(tup,sup,dpsum)+ &
dsiglocdt(t1d(k),s1d(k),dpsum))*(tup-t1d(k))
betads=0.5*(dsiglocds(tup,sup,dpsum)+ &
dsiglocds(t1d(k),s1d(k),dpsum))*(sup-s1d(k))
if (alfadt+betads.gt.0.0) then
kmlb=k
tsum=tsum+t1d(k)*dp1d(k)
ssum=ssum+s1d(k)*dp1d(k)
dpsum=dpsum+dp1d(k)
else
exit !k
endif
else
thup=sig(tsum/dpsum,ssum/dpsum)-thbase
if (th1d(k).lt.thup) then
kmlb=k
tsum=tsum+t1d(k)*dp1d(k)
ssum=ssum+s1d(k)*dp1d(k)
dpsum=dpsum+dp1d(k)
else
exit !k
endif
endif
enddo !k
!
if (kmlb.gt.1) then
t1d(1)=tsum/dpsum
s1d(1)=ssum/dpsum
th1d(1)=sig(t1d(1),s1d(1))-thbase
do k=2,kmlb
t1d(k)=t1d(1)
s1d(k)=s1d(1)
th1d(k)=th1d(1)
do ktr= 1,ntracr
tr1d(k,ktr)=1.0
enddo !ktr
!
!diag if (i.eq.itest .and. j.eq.jtest) then
!diag write (lp,101) nstep,i+i0,j+j0,k,kmlb, &
!diag ' relieve static instability - t,s,th:', &
!diag t1d(k),s1d(k),tr1d(k,1)
!diag call flush(lp)
!diag endif
101 format (i9,2i5,2i3,a/9x,3f9.4)
enddo !k
endif !kmlb>1
!
! --- diagnose depth of mixed layer base and homogenize
call mlbdep(t1d,s1d,th1d,tr1d,u1d,v1d,p1d,dp1d,kmlb,kmax)
!
! ---------------------------------
! --- bulk richardson number mixing
! ---------------------------------
!
! --- mixing within the layer containing the mixed layer base
kmlb1=kmlb+1
tsum=t1d(1)*p1d(kmlb1)
ssum=s1d(1)*p1d(kmlb1)
usum=u1d(1)*p1d(kmlb1)
vsum=v1d(1)*p1d(kmlb1)
k10=kmlb
do k=kmlb1,kmax
k1=k-1
k2=k+1
if (locsig) then
alfadt=dsiglocdt(ahalf*(t1d(k1)+t1d(k)), &
ahalf*(s1d(k1)+s1d(k)),p1d(k))* &
(t1d(k1)-t1d(k))
betads=dsiglocds(ahalf*(t1d(k1)+t1d(k)), &
ahalf*(s1d(k1)+s1d(k)),p1d(k))* &
(s1d(k1)-s1d(k))
rib=-g*svref*p1d(k)*min(0.0,alfadt+betads)/ &
(onem*max(1.e-8,(u1d(k)-u1d(k1))**2+(v1d(k)-v1d(k1))**2))
else
rib=g*svref*p1d(k)*max(0.0,th1d(k)-th1d(k1))/ &
(onem*max(1.e-8,(u1d(k)-u1d(k1))**2+(v1d(k)-v1d(k1))**2))
endif
!
! --- if rib indicates instability, mix downward to the next interface
if (rib.lt.ribc.and.p1d(kk+1)-p1d(k+1).ge.tencm) then
!
tsum=tsum+t1d(k)*dp1d(k)
ssum=ssum+s1d(k)*dp1d(k)
do ktr= 1,ntracr
tr1d(k,ktr)=1.0
enddo
usum=usum+u1d(k)*dp1d(k)
vsum=vsum+v1d(k)*dp1d(k)
!
t1d(1)=tsum/p1d(k2)
s1d(1)=ssum/p1d(k2)
th1d(1)=sig(t1d(1),s1d(1))-thbase
u1d(1)=usum/p1d(k2)
v1d(1)=vsum/p1d(k2)
!
do k3=2,k
t1d (k3)=t1d (1)
s1d (k3)=s1d (1)
th1d(k3)=th1d(1)
do ktr= 1,ntracr
tr1d(k3,ktr)=1.0
enddo
u1d (k3)=u1d (1)
v1d (k3)=v1d (1)
!
!diag if (i.eq.itest .and. j.eq.jtest .and. k3.eq.k10) then
!diag write (lp,102) nstep,i+i0,j+j0,k,k1,k2,k3,kmlb, &
!diag ' bulk ri mixing - rib,t,s,th:',min(1000.0,rib), &
!diag t1d(k3),s1d(k3),th1d(k3)
!diag call flush(lp)
!diag endif
102 format (i9,2i5,5i3,a/9x,4f9.4)
!
enddo
kmlb=k
else
exit !k
endif
enddo !k
!
! --- diagnose depth of mixed layer base and homogenize
call mlbdep(t1d,s1d,th1d,tr1d,u1d,v1d,p1d,dp1d,kmlb,kmax)
!
! -------------------------------------
! --- gradient richardson number mixing
! -------------------------------------
!
! --- use array 'vcty' to store gradient Ri mixing factor for u,v mixing
!
do k=1,kk+1
vcty(i,j,k)=0.0
enddo
!
! --- perform up to 5 iterations
do iter=1,5
!
! --- calculate rig array
!
do k=kmlb+1,kmax
k1=k-1
if (locsig) then
alfadt=dsiglocdt(ahalf*(t1d(k1)+t1d(k)), &
ahalf*(s1d(k1)+s1d(k)),p1d(k))* &
(t1d(k1)-t1d(k))
betads=dsiglocds(ahalf*(t1d(k1)+t1d(k)), &
ahalf*(s1d(k1)+s1d(k)),p1d(k))* &
(s1d(k1)-s1d(k))
rig(k)=-g*min(dp1d(k1),dp1d(k))*svref* &
min(-1.0e-3,alfadt+betads)/(onem* &
max( 1.0e-6,(u1d(k1)-u1d(k))**2+(v1d(k1)-v1d(k))**2))
else
rig(k)=g*min(dp1d(k1),dp1d(k))*svref* &
max(1.0e-3,th1d(k)-th1d(k1))/(onem* &
max(1.0e-6,(u1d(k1)-u1d(k))**2+ &
(v1d(k1)-v1d(k))**2))
endif
!diag if (i.eq.itest .and. j.eq.jtest) then
!diag write(6,103) nstep,i+i0,j+j0,k,iter,th1d(k1)+thbase, &
!diag th1d(k)+thbase, &
!diag (u1d(k1)-u1d(k))**2+ &
!diag (v1d(k1)-v1d(k))**2,rig(k), &
!diag dp1d(k1)/onem,dp1d(k)/onem
!diag call flush(lp)
!diag endif
103 format('rig(k)',i9,2i5,2i3,1p,6e13.5)
enddo !k
!
! --- identify interface where rig has a vertical minimum at each grid point
kintf=0
rig2=huge(rig2)
do k=kmlb+1,kmax
if(rig(k).lt.rig2) then
kintf=k
rig2=rig(k)
end if
enddo !k
!
! --- if selected layer pair is unstable, mix to bring rig up to rigc
! --- store factor rig1 in array vcty for u,v mixing
if(rig2.lt.rigc) then
k=kintf
rig1=1.-rig2/rigc
vcty(i,j,k)=rig1
!
rigf=rig1*(t1d(k-1)-t1d(k))
told=t1d(k-1)
t1d(k-1)=t1d(k-1)-rigf*dp1d(k )/max(epsil,dp1d(k-1)+dp1d(k))
t1d(k )=t1d(k )+rigf*dp1d(k-1)/max(epsil,dp1d(k-1)+dp1d(k))
!diag if (i.eq.itest .and. j.eq.jtest.and.mnproc.eq.1) then
!diag if(k.gt.15.and.k.lt.22) then
!diag write(6,104) nstep,i+i0,j+j0,k,rigf,rig1,t1d(k-1),t1d(k), &
!diag dp1d(k-1)/onem,dp1d(k)/onem, &
!diag dp1d(min(kk,k+1))/onem
!diag call flush(lp)
!diag endif
104 format('rig mixing',i9,2i5,i3,1p,7e13.5)
!
rigf=rig1*(s1d(k-1)-s1d(k))
sold=s1d(k-1)
s1d(k-1)=s1d(k-1)-rigf*dp1d(k )/max(epsil,dp1d(k-1)+dp1d(k))
s1d(k )=s1d(k )+rigf*dp1d(k-1)/max(epsil,dp1d(k-1)+dp1d(k))
!
th1d(k-1)=sig(t1d(k-1),s1d(k-1))-thbase
th1d(k )=sig(t1d(k ),s1d(k ))-thbase
!
do ktr= 1,ntracr
rigf=rig1*(tr1d(k-1,ktr)-tr1d(k,ktr))
trold=tr1d(k-1,ktr)
tr1d(k-1,ktr)=tr1d(k-1,ktr)-rigf*dp1d(k )/ &
max(epsil,dp1d(k-1)+dp1d(k))
tr1d(k ,ktr)=tr1d(k ,ktr)+rigf*dp1d(k-1)/ &
max(epsil,dp1d(k-1)+dp1d(k))
enddo !ktr
!
rigf=rig1*(u1d(k-1)-u1d(k))
uold=u1d(k-1)
u1d(k-1)=u1d(k-1)-rigf*dp1d(k )/max(epsil,dp1d(k-1)+dp1d(k))
u1d(k )=u1d(k )+rigf*dp1d(k-1)/max(epsil,dp1d(k-1)+dp1d(k))
!
rigf=rig1*(v1d(k-1)-v1d(k))
vold=v1d(k-1)
v1d(k-1)=v1d(k-1)-rigf*dp1d(k )/max(epsil,dp1d(k-1)+dp1d(k))
v1d(k )=v1d(k )+rigf*dp1d(k-1)/max(epsil,dp1d(k-1)+dp1d(k))
!
end if !rig2<rigc
!
enddo !iter
!
! --- diagnose depth of mixed layer base and homogenize
call mlbdep(t1d,s1d,th1d,tr1d,u1d,v1d,p1d,dp1d,kmlb,kmax)
!
! ------------------------------------
! reset mixed layer and 3-d arrays
! ------------------------------------
!
dpbl(i,j)=p1d(kmlb+1)
!
do k=1,kmax
temp(i,j,k,n)=t1d(k)
saln(i,j,k,n)=s1d(k)
th3d(i,j,k,n)=sig(t1d(k),s1d(k))-thbase
do ktr= 1,ntracr
tracer(i,j,k,n,ktr)=tr1d(k,ktr)
enddo
enddo
!
return
end
!
subroutine mxpwpbiju(m,n, i,j)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
! --- hycom version 2.1
!
real dpm,usum,rig1,rigf
integer m,n, i,j
integer k,kintf
!
! ----------------------------------------------------------------------------
! --- pwp vertical diffusion, single j-row (part A), momentum at u grid points
! ----------------------------------------------------------------------------
!
! --- bulk richardson number mixing
! --- homogenize u between the surface and interface kintf, the closest
! --- interface to the interpolated mixed layer thickness
!
dpm=0.5*(dpbl(i,j)+dpbl(i-1,j))
usum=0.0
kintf=2
pu(i,j,1)=0.0
!
do k=1,kk
pu(i,j,k+1)=pu(i,j,k)+dpu(i,j,k,n)
if (abs(dpm-pu(i,j,k+1)) .lt. abs(dpm-pu(i,j,k)) .and. &
depthu(i,j)-pu(i,j,k+1) .gt. tencm) then
kintf=k+1
usum=usum+u(i,j,k,n)*dpu(i,j,k,n)
endif
enddo
!
if (kintf.gt.2) then
u(i,j,1,n)=usum/pu(i,j,kintf)
do k=2,kintf-1
u(i,j,k,n)=u(i,j,1,n)
enddo
endif
!
! --- gradient richardson number mixing
!
do k=2,kk
rig1=0.5*(vcty(i,j,k)+vcty(i-1,j,k))
if (rig1.gt.0.0) then
rigf=rig1*(u(i,j,k-1,n)-u(i,j,k,n))
u(i,j,k-1,n)=u(i,j,k-1,n)-rigf*dpu(i,j,k ,n)/ &
max(epsil,dpu(i,j,k-1,n)+dpu(i,j,k,n))
u(i,j,k ,n)=u(i,j,k ,n)+rigf*dpu(i,j,k-1,n)/ &
max(epsil,dpu(i,j,k-1,n)+dpu(i,j,k,n))
endif
enddo
!
return
end
!
subroutine mxpwpbijv(m,n, i,j)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
! --- hycom version 2.1
!
real dpm,vsum,rig1,rigf
integer m,n, i,j
integer k,kintf
!
! ----------------------------------------------------------------------------
! --- pwp vertical diffusion, single j-row (part A), momentum at v grid points
! ----------------------------------------------------------------------------
!
! --- bulk richardson number mixing
! --- homogenize v between the surface and interface kintf, the closest
! --- interface to the interpolated mixed layer thickness
!
dpm=0.5*(dpbl(i,j)+dpbl(i,j-1))
vsum=0.0
kintf=1
pv(i,j,1)=0.0
!
do k=1,kk
pv(i,j,k+1)=pv(i,j,k)+dpv(i,j,k,n)
if (abs(dpm-pv(i,j,k+1)) .lt. abs(dpm-pv(i,j,k)) .and. &
depthv(i,j)-pv(i,j,k+1) .gt. tencm) then
kintf=k+1
vsum=vsum+v(i,j,k,n)*dpv(i,j,k,n)
endif
enddo
!
if (kintf.gt.2) then
v(i,j,1,n)=vsum/pv(i,j,kintf)
do k=2,kintf-1
v(i,j,k,n)=v(i,j,1,n)
enddo
endif
!
! --- gradient richardson number mixing
!
do k=2,kk
rig1=0.5*(vcty(i,j,k)+vcty(i,j-1,k))
if (rig1.gt.0.0) then
rigf=rig1*(v(i,j,k-1,n)-v(i,j,k,n))
v(i,j,k-1,n)=v(i,j,k-1,n)-rigf*dpv(i,j,k ,n)/ &
max(epsil,dpv(i,j,k-1,n)+dpv(i,j,k,n))
v(i,j,k ,n)=v(i,j,k ,n)+rigf*dpv(i,j,k-1,n)/ &
max(epsil,dpv(i,j,k-1,n)+dpv(i,j,k,n))
endif
enddo
!
return
end
!
subroutine mlbdep(t1d,s1d,th1d,tr1d,u1d,v1d,p1d,dp1d,kmlb,kmax)
use mod_xc ! HYCOM communication interface
use mod_cb_arrays ! HYCOM saved arrays
implicit none
!
! --- hycom version 2.1
!
integer k,kmlb,kmax,ktr
real t1d(kdm),s1d(kdm),th1d(kdm),tr1d(kdm,mxtrcr), &
u1d(kdm),v1d(kdm),p1d(kdm+1),dp1d(kdm)
real tsum,ssum,usum,vsum,dpsum
!
# include "stmt_fns.h"
!
! --- -----------------------------------------------------------------------
! --- diagnose depth of the PWP mixed layer base and homogenize to that depth
! --- -----------------------------------------------------------------------
!
! --- set to depth of first interface deeper than thkmin across which
! --- the density jump exceeds 1.0e-4
kmlb=kmax
do k=2,kmax
if ((th1d(k)-th1d(k-1)).ge.1.0e-4 .and. &
p1d(k).gt.thkmin*onem) then
kmlb=k-1
exit !k
endif
enddo !k
!
if (kmlb.gt.1) then
tsum=t1d(1)*dp1d(1)
ssum=s1d(1)*dp1d(1)
usum=u1d(1)*dp1d(1)
vsum=v1d(1)*dp1d(1)
dpsum=dp1d(1)
do k=2,kmlb
tsum=tsum+t1d(k)*dp1d(k)
ssum=ssum+s1d(k)*dp1d(k)
usum=usum+u1d(k)*dp1d(k)
vsum=vsum+v1d(k)*dp1d(k)
dpsum=dpsum+dp1d(k)
enddo
!
t1d(1)=tsum/dpsum
s1d(1)=ssum/dpsum
th1d(1)=sig(t1d(1),s1d(1))-thbase
do ktr= 1,ntracr
tr1d(1,ktr)=1.0
enddo
u1d(1)=usum/dpsum
v1d(1)=vsum/dpsum
do k=2,kmlb
t1d(k)=t1d(1)
s1d(k)=s1d(1)
th1d(k)=th1d(1)
do ktr= 1,ntracr
tr1d(k,ktr)=1.0
enddo
u1d(k)=u1d(1)
v1d(k)=v1d(1)
enddo
endif
!
return
end
!
!
!> Revision history:
!>
!> Mar. 2004: minimum layer thickness used to calculate gradient Ri
!> Oct. 2010: replaced two calls to dsiglocdX with one call at mid-point
!> Oct. 2013 - added jerlv0=-1 and call to swfrac_ij
!> May 2014 - use land/sea masks (e.g. ip) to skip land
!> Aug. 2018 - added wtrflx, salflx now only actual salt flux
!> Nov. 2018 - allow for oneta in swfrac and surface fluxes