forked from Weizhi-Zhong/IP_LAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_single.py
519 lines (465 loc) · 27 KB
/
inference_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import numpy as np
import cv2, os, argparse
import subprocess
from tqdm import tqdm
from models import Renderer
import torch
from models import Landmark_generator as Landmark_transformer
import face_alignment
from models import audio
from draw_landmark import draw_landmarks
import mediapipe as mp
parser = argparse.ArgumentParser()
parser.add_argument('--input', '--input_template_video', type=str, default='./test/template_video/129.mp4')
#'./test/template_video/129.mp4'
parser.add_argument('--audio', type=str, default='./test/template_video/audio2.wav')
#'./test/template_video/abstract.mp3'
#'./test/template_video/audio2.wav'
parser.add_argument('--output_dir', type=str, default='./test_result')
parser.add_argument('--static', type=bool, help='whether only use the first frame for inference', default=False)
parser.add_argument('--landmark_gen_checkpoint_path', type=str, default='./test/checkpoints/landmarkgenerator_checkpoint.pth')
parser.add_argument('--renderer_checkpoint_path', type=str, default='./test/checkpoints/renderer_checkpoint.pth')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
args = parser.parse_args()
ref_img_N = 25
Nl = 15
T = 5
mel_step_size = 16
img_size = 128
mp_face_mesh = mp.solutions.face_mesh
drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=1, circle_radius=1)
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False, device='cuda')
lip_index = [0, 17] # the index of the midpoints of the upper lip and lower lip
landmark_gen_checkpoint_path = args.landmark_gen_checkpoint_path
renderer_checkpoint_path =args.renderer_checkpoint_path
output_dir = args.output_dir
temp_dir = 'tempfile_of_{}'.format(output_dir.split('/')[-1])
os.makedirs(output_dir, exist_ok=True)
os.makedirs(temp_dir, exist_ok=True)
input_video_path = args.input
input_audio_path = args.audio
# the following is the index sequence for fical landmarks detected by mediapipe
ori_sequence_idx = [162, 127, 234, 93, 132, 58, 172, 136, 150, 149, 176, 148, 152, 377, 400, 378, 379, 365, 397, 288,
361, 323, 454, 356, 389, #
70, 63, 105, 66, 107, 55, 65, 52, 53, 46, #
336, 296, 334, 293, 300, 276, 283, 282, 295, 285, #
168, 6, 197, 195, 5, #
48, 115, 220, 45, 4, 275, 440, 344, 278, #
33, 246, 161, 160, 159, 158, 157, 173, 133, 155, 154, 153, 145, 144, 163, 7, #
362, 398, 384, 385, 386, 387, 388, 466, 263, 249, 390, 373, 374, 380, 381, 382, #
61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291, 375, 321, 405, 314, 17, 84, 181, 91, 146, #
78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308, 324, 318, 402, 317, 14, 87, 178, 88, 95]
# the following is the connections of landmarks for drawing sketch image
FACEMESH_LIPS = frozenset([(61, 146), (146, 91), (91, 181), (181, 84), (84, 17),
(17, 314), (314, 405), (405, 321), (321, 375),
(375, 291), (61, 185), (185, 40), (40, 39), (39, 37),
(37, 0), (0, 267),
(267, 269), (269, 270), (270, 409), (409, 291),
(78, 95), (95, 88), (88, 178), (178, 87), (87, 14),
(14, 317), (317, 402), (402, 318), (318, 324),
(324, 308), (78, 191), (191, 80), (80, 81), (81, 82),
(82, 13), (13, 312), (312, 311), (311, 310),
(310, 415), (415, 308)])
FACEMESH_LEFT_EYE = frozenset([(263, 249), (249, 390), (390, 373), (373, 374),
(374, 380), (380, 381), (381, 382), (382, 362),
(263, 466), (466, 388), (388, 387), (387, 386),
(386, 385), (385, 384), (384, 398), (398, 362)])
FACEMESH_LEFT_EYEBROW = frozenset([(276, 283), (283, 282), (282, 295),
(295, 285), (300, 293), (293, 334),
(334, 296), (296, 336)])
FACEMESH_RIGHT_EYE = frozenset([(33, 7), (7, 163), (163, 144), (144, 145),
(145, 153), (153, 154), (154, 155), (155, 133),
(33, 246), (246, 161), (161, 160), (160, 159),
(159, 158), (158, 157), (157, 173), (173, 133)])
FACEMESH_RIGHT_EYEBROW = frozenset([(46, 53), (53, 52), (52, 65), (65, 55),
(70, 63), (63, 105), (105, 66), (66, 107)])
FACEMESH_FACE_OVAL = frozenset([(389, 356), (356, 454),
(454, 323), (323, 361), (361, 288), (288, 397),
(397, 365), (365, 379), (379, 378), (378, 400),
(400, 377), (377, 152), (152, 148), (148, 176),
(176, 149), (149, 150), (150, 136), (136, 172),
(172, 58), (58, 132), (132, 93), (93, 234),
(234, 127), (127, 162)])
FACEMESH_NOSE = frozenset([(168, 6), (6, 197), (197, 195), (195, 5), (5, 4),
(4, 45), (45, 220), (220, 115), (115, 48),
(4, 275), (275, 440), (440, 344), (344, 278), ])
FACEMESH_CONNECTION = frozenset().union(*[
FACEMESH_LIPS, FACEMESH_LEFT_EYE, FACEMESH_LEFT_EYEBROW, FACEMESH_RIGHT_EYE,
FACEMESH_RIGHT_EYEBROW, FACEMESH_FACE_OVAL, FACEMESH_NOSE
])
full_face_landmark_sequence = [*list(range(0, 4)), *list(range(21, 25)), *list(range(25, 91)), #upper-half face
*list(range(4, 21)), # jaw
*list(range(91, 131))] # mouth
def summarize_landmark(edge_set): # summarize all ficial landmarks used to construct edge
landmarks = set()
for a, b in edge_set:
landmarks.add(a)
landmarks.add(b)
return landmarks
all_landmarks_idx = summarize_landmark(FACEMESH_CONNECTION)
pose_landmark_idx = \
summarize_landmark(FACEMESH_NOSE.union(*[FACEMESH_RIGHT_EYEBROW, FACEMESH_RIGHT_EYE,
FACEMESH_LEFT_EYE, FACEMESH_LEFT_EYEBROW, ])).union(
[162, 127, 234, 93, 389, 356, 454, 323])
# pose landmarks are landmarks of the upper-half face(eyes,nose,cheek) that represents the pose information
content_landmark_idx = all_landmarks_idx - pose_landmark_idx
# content_landmark include landmarks of lip and jaw which are inferred from audio
if os.path.isfile(input_video_path) and input_video_path.split('.')[1] in ['jpg', 'png', 'jpeg']:
args.static = True
outfile_path = os.path.join(output_dir,
'{}_N_{}_Nl_{}.mp4'.format(input_video_path.split('/')[-1][:-4] + 'result', ref_img_N, Nl))
if os.path.isfile(input_video_path) and input_video_path.split('.')[1] in ['jpg', 'png', 'jpeg']:
args.static = True
def swap_masked_region(target_img, src_img, mask): #function used in post-process
"""From src_img crop masked region to replace corresponding masked region
in target_img
""" # swap_masked_region(src_frame, generated_frame, mask=mask_img)
mask_img = cv2.GaussianBlur(mask, (21, 21), 11)
mask1 = mask_img / 255
mask1 = np.tile(np.expand_dims(mask1, axis=2), (1, 1, 3))
img = src_img * mask1 + target_img * (1 - mask1)
return img.astype(np.uint8)
def merge_face_contour_only(src_frame, generated_frame, face_region_coord, fa): #function used in post-process
"""Merge the face from generated_frame into src_frame
"""
input_img = src_frame
y1, y2, x1, x2 = 0, 0, 0, 0
if face_region_coord is not None:
y1, y2, x1, x2 = face_region_coord
input_img = src_frame[y1:y2, x1:x2]
### 1) Detect the facial landmarks
preds = fa.get_landmarks(input_img)[0] # 68x2
if face_region_coord is not None:
preds += np.array([x1, y1])
lm_pts = preds.astype(int)
contour_idx = list(range(0, 17)) + list(range(17, 27))[::-1]
contour_pts = lm_pts[contour_idx]
### 2) Make the landmark region mark image
mask_img = np.zeros((src_frame.shape[0], src_frame.shape[1], 1), np.uint8)
cv2.fillConvexPoly(mask_img, contour_pts, 255)
### 3) Do swap
img = swap_masked_region(src_frame, generated_frame, mask=mask_img)
return img
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
return checkpoint
def load_model(model, path):
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
if k[:6] == 'module':
new_k=k.replace('module.', '', 1)
else:
new_k =k
new_s[new_k] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
class LandmarkDict(dict):# Makes a dictionary that behave like an object to represent each landmark
def __init__(self, idx, x, y):
self['idx'] = idx
self['x'] = x
self['y'] = y
def __getattr__(self, name):
try:
return self[name]
except:
raise AttributeError(name)
def __setattr__(self, name, value):
self[name] = value
print(" landmark_generator_model loaded from : ", landmark_gen_checkpoint_path)
print(" renderer loaded from : ", renderer_checkpoint_path)
landmark_generator_model = load_model(
model=Landmark_transformer(T=T, d_model=512, nlayers=4, nhead=4, dim_feedforward=1024, dropout=0.1),
path=landmark_gen_checkpoint_path)
renderer = load_model(model=Renderer(), path=renderer_checkpoint_path)
##(1) Reading input video frames ###
print('Reading video frames ... from', input_video_path)
if not os.path.isfile(input_video_path):
raise ValueError('the input video file does not exist')
elif input_video_path.split('.')[1] in ['jpg', 'png', 'jpeg']: #if input a single image for testing
ori_background_frames = [cv2.imread(input_video_path)]
else:
video_stream = cv2.VideoCapture(input_video_path)
fps = video_stream.get(cv2.CAP_PROP_FPS)
if fps != 25:
print(" input video fps:", fps,',converting to 25fps...')
command = 'ffmpeg -y -i ' + input_video_path + ' -r 25 ' + '{}/temp_25fps.avi'.format(temp_dir)
subprocess.call(command, shell=True)
input_video_path = '{}/temp_25fps.avi'.format(temp_dir)
video_stream.release()
video_stream = cv2.VideoCapture(input_video_path)
fps = video_stream.get(cv2.CAP_PROP_FPS)
assert fps == 25
ori_background_frames = [] #input videos frames (includes background as well as face)
frame_idx = 0
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
ori_background_frames.append(frame)
frame_idx = frame_idx + 1
input_vid_len = len(ori_background_frames)
##(2) Extracting audio####
if not input_audio_path.endswith('.wav'):
command = 'ffmpeg -y -i {} -strict -2 {}'.format(input_audio_path, '{}/temp.wav'.format(temp_dir))
subprocess.call(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
input_audio_path = '{}/temp.wav'.format(temp_dir)
wav = audio.load_wav(input_audio_path, 16000)
mel = audio.melspectrogram(wav) # (H,W) extract mel-spectrum
##read audio mel into list###
mel_chunks = [] # each mel chunk correspond to 5 video frames, used to generate one video frame
mel_idx_multiplier = 80. / fps
mel_chunk_idx = 0
while 1:
start_idx = int(mel_chunk_idx * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
break
mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size]) # mel for generate one video frame
mel_chunk_idx += 1
# mel_chunks = mel_chunks[:(len(mel_chunks) // T) * T]
##(3) detect facial landmarks using mediapipe tool
boxes = [] #bounding boxes of human face
lip_dists = [] #lip dists
#we define the lip dist(openness): distance between the midpoints of the upper lip and lower lip
face_crop_results = []
all_pose_landmarks, all_content_landmarks = [], [] #content landmarks include lip and jaw landmarks
with mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True,
min_detection_confidence=0.5) as face_mesh:
# (1) get bounding boxes and lip dist
for frame_idx, full_frame in enumerate(ori_background_frames):
h, w = full_frame.shape[0], full_frame.shape[1]
results = face_mesh.process(cv2.cvtColor(full_frame, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
raise NotImplementedError # not detect face
face_landmarks = results.multi_face_landmarks[0]
## calculate the lip dist
dx = face_landmarks.landmark[lip_index[0]].x - face_landmarks.landmark[lip_index[1]].x
dy = face_landmarks.landmark[lip_index[0]].y - face_landmarks.landmark[lip_index[1]].y
dist = np.linalg.norm((dx, dy))
lip_dists.append((frame_idx, dist))
# (1)get the marginal landmarks to crop face
x_min,x_max,y_min,y_max = 999,-999,999,-999
for idx, landmark in enumerate(face_landmarks.landmark):
if idx in all_landmarks_idx:
if landmark.x < x_min:
x_min = landmark.x
if landmark.x > x_max:
x_max = landmark.x
if landmark.y < y_min:
y_min = landmark.y
if landmark.y > y_max:
y_max = landmark.y
##########plus some pixel to the marginal region##########
#note:the landmarks coordinates returned by mediapipe range 0~1
plus_pixel = 25
x_min = max(x_min - plus_pixel / w, 0)
x_max = min(x_max + plus_pixel / w, 1)
y_min = max(y_min - plus_pixel / h, 0)
y_max = min(y_max + plus_pixel / h, 1)
y1, y2, x1, x2 = int(y_min * h), int(y_max * h), int(x_min * w), int(x_max * w)
boxes.append([y1, y2, x1, x2])
boxes = np.array(boxes)
# (2)croppd face
face_crop_results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] \
for image, (y1, y2, x1, x2) in zip(ori_background_frames, boxes)]
# (3)detect facial landmarks
for frame_idx, full_frame in enumerate(ori_background_frames):
h, w = full_frame.shape[0], full_frame.shape[1]
results = face_mesh.process(cv2.cvtColor(full_frame, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
raise ValueError("not detect face in some frame!") # not detect
face_landmarks = results.multi_face_landmarks[0]
pose_landmarks, content_landmarks = [], []
for idx, landmark in enumerate(face_landmarks.landmark):
if idx in pose_landmark_idx:
pose_landmarks.append((idx, w * landmark.x, h * landmark.y))
if idx in content_landmark_idx:
content_landmarks.append((idx, w * landmark.x, h * landmark.y))
# normalize landmarks to 0~1
y_min, y_max, x_min, x_max = face_crop_results[frame_idx][1] #bounding boxes
pose_landmarks = [ \
[idx, (x - x_min) / (x_max - x_min), (y - y_min) / (y_max - y_min)] for idx, x, y in pose_landmarks]
content_landmarks = [ \
[idx, (x - x_min) / (x_max - x_min), (y - y_min) / (y_max - y_min)] for idx, x, y in content_landmarks]
all_pose_landmarks.append(pose_landmarks)
all_content_landmarks.append(content_landmarks)
# smooth landmarks
def get_smoothened_landmarks(all_landmarks, windows_T=1):
for i in range(len(all_landmarks)): # frame i
if i + windows_T > len(all_landmarks):
window = all_landmarks[len(all_landmarks) - windows_T:]
else:
window = all_landmarks[i: i + windows_T]
#####
for j in range(len(all_landmarks[i])): # landmark j
all_landmarks[i][j][1] = np.mean([frame_landmarks[j][1] for frame_landmarks in window]) # x
all_landmarks[i][j][2] = np.mean([frame_landmarks[j][2] for frame_landmarks in window]) # y
return all_landmarks
all_pose_landmarks = get_smoothened_landmarks(all_pose_landmarks, windows_T=1)
all_content_landmarks=get_smoothened_landmarks(all_content_landmarks,windows_T=1)
##randomly select N_l reference landmarks for landmark transformer##
dists_sorted = sorted(lip_dists, key=lambda x: x[1])
lip_dist_idx = np.asarray([idx for idx, dist in dists_sorted]) #the frame idxs sorted by lip openness
Nl_idxs = [lip_dist_idx[int(i)] for i in torch.linspace(0, input_vid_len - 1, steps=Nl)]
Nl_pose_landmarks, Nl_content_landmarks = [], [] #Nl_pose + Nl_content=Nl reference landmarks
for reference_idx in Nl_idxs:
frame_pose_landmarks = all_pose_landmarks[reference_idx]
frame_content_landmarks = all_content_landmarks[reference_idx]
Nl_pose_landmarks.append(frame_pose_landmarks)
Nl_content_landmarks.append(frame_content_landmarks)
Nl_pose = torch.zeros((Nl, 2, 74)) # 74 landmark
Nl_content = torch.zeros((Nl, 2, 57)) # 57 landmark
for idx in range(Nl):
#arrange the landmark in a certain order, since the landmark index returned by mediapipe is is chaotic
Nl_pose_landmarks[idx] = sorted(Nl_pose_landmarks[idx],
key=lambda land_tuple: ori_sequence_idx.index(land_tuple[0]))
Nl_content_landmarks[idx] = sorted(Nl_content_landmarks[idx],
key=lambda land_tuple: ori_sequence_idx.index(land_tuple[0]))
Nl_pose[idx, 0, :] = torch.FloatTensor(
[Nl_pose_landmarks[idx][i][1] for i in range(len(Nl_pose_landmarks[idx]))]) # x
Nl_pose[idx, 1, :] = torch.FloatTensor(
[Nl_pose_landmarks[idx][i][2] for i in range(len(Nl_pose_landmarks[idx]))]) # y
Nl_content[idx, 0, :] = torch.FloatTensor(
[Nl_content_landmarks[idx][i][1] for i in range(len(Nl_content_landmarks[idx]))]) # x
Nl_content[idx, 1, :] = torch.FloatTensor(
[Nl_content_landmarks[idx][i][2] for i in range(len(Nl_content_landmarks[idx]))]) # y
Nl_content = Nl_content.unsqueeze(0) # (1,Nl, 2, 57)
Nl_pose = Nl_pose.unsqueeze(0) # (1,Nl,2,74)
##select reference images and draw sketches for rendering according to lip openness##
ref_img_idx = [int(lip_dist_idx[int(i)]) for i in torch.linspace(0, input_vid_len - 1, steps=ref_img_N)]
ref_imgs = [face_crop_results[idx][0] for idx in ref_img_idx]
## (N,H,W,3)
ref_img_pose_landmarks, ref_img_content_landmarks = [], []
for idx in ref_img_idx:
ref_img_pose_landmarks.append(all_pose_landmarks[idx])
ref_img_content_landmarks.append(all_content_landmarks[idx])
ref_img_pose = torch.zeros((ref_img_N, 2, 74)) # 74 landmark
ref_img_content = torch.zeros((ref_img_N, 2, 57)) # 57 landmark
for idx in range(ref_img_N):
ref_img_pose_landmarks[idx] = sorted(ref_img_pose_landmarks[idx],
key=lambda land_tuple: ori_sequence_idx.index(land_tuple[0]))
ref_img_content_landmarks[idx] = sorted(ref_img_content_landmarks[idx],
key=lambda land_tuple: ori_sequence_idx.index(land_tuple[0]))
ref_img_pose[idx, 0, :] = torch.FloatTensor(
[ref_img_pose_landmarks[idx][i][1] for i in range(len(ref_img_pose_landmarks[idx]))]) # x
ref_img_pose[idx, 1, :] = torch.FloatTensor(
[ref_img_pose_landmarks[idx][i][2] for i in range(len(ref_img_pose_landmarks[idx]))]) # y
ref_img_content[idx, 0, :] = torch.FloatTensor(
[ref_img_content_landmarks[idx][i][1] for i in range(len(ref_img_content_landmarks[idx]))]) # x
ref_img_content[idx, 1, :] = torch.FloatTensor(
[ref_img_content_landmarks[idx][i][2] for i in range(len(ref_img_content_landmarks[idx]))]) # y
ref_img_full_face_landmarks = torch.cat([ref_img_pose, ref_img_content], dim=2).cpu().numpy() # (N,2,131)
ref_img_sketches = []
for frame_idx in range(ref_img_full_face_landmarks.shape[0]): # N
full_landmarks = ref_img_full_face_landmarks[frame_idx] # (2,131)
h, w = ref_imgs[frame_idx].shape[0], ref_imgs[frame_idx].shape[1]
drawn_sketech = np.zeros((int(h * img_size / min(h, w)), int(w * img_size / min(h, w)), 3))
mediapipe_format_landmarks = [LandmarkDict(ori_sequence_idx[full_face_landmark_sequence[idx]], full_landmarks[0, idx],
full_landmarks[1, idx]) for idx in range(full_landmarks.shape[1])]
drawn_sketech = draw_landmarks(drawn_sketech, mediapipe_format_landmarks, connections=FACEMESH_CONNECTION,
connection_drawing_spec=drawing_spec)
drawn_sketech = cv2.resize(drawn_sketech, (img_size, img_size)) # (128, 128, 3)
ref_img_sketches.append(drawn_sketech)
ref_img_sketches = torch.FloatTensor(np.asarray(ref_img_sketches) / 255.0).cuda().unsqueeze(0).permute(0, 1, 4, 2, 3)
# (1,N, 3, 128, 128)
ref_imgs = [cv2.resize(face.copy(), (img_size, img_size)) for face in ref_imgs]
ref_imgs = torch.FloatTensor(np.asarray(ref_imgs) / 255.0).unsqueeze(0).permute(0, 1, 4, 2, 3).cuda()
# (1,N,3,H,W)
##prepare output video strame##
frame_h, frame_w = ori_background_frames[0].shape[:-1]
out_stream = cv2.VideoWriter('{}/result.avi'.format(temp_dir), cv2.VideoWriter_fourcc(*'DIVX'), fps,
(frame_w * 2, frame_h)) # +frame_h*3
##generate final face image and output video##
input_mel_chunks_len = len(mel_chunks)
input_frame_sequence = torch.arange(input_vid_len).tolist()
#the input template video may be shorter than audio
#in this case we repeat the input template video as following
num_of_repeat=input_mel_chunks_len//input_vid_len+1
input_frame_sequence = input_frame_sequence + list(reversed(input_frame_sequence))
input_frame_sequence=input_frame_sequence*((num_of_repeat+1)//2)
for batch_idx, batch_start_idx in tqdm(enumerate(range(0, input_mel_chunks_len - 2, 1)),
total=len(range(0, input_mel_chunks_len - 2, 1))):
T_input_frame, T_ori_face_coordinates = [], []
#note: input_frame include background as well as face
T_mel_batch, T_crop_face,T_pose_landmarks = [], [],[]
# (1) for each batch of T frame, generate corresponding landmarks using landmark generator
for mel_chunk_idx in range(batch_start_idx, batch_start_idx + T): # for each T frame
# 1 input audio
T_mel_batch.append(mel_chunks[max(0, mel_chunk_idx - 2)])
# 2.input face
input_frame_idx = int(input_frame_sequence[mel_chunk_idx])
face, coords = face_crop_results[input_frame_idx]
T_crop_face.append(face)
T_ori_face_coordinates.append((face, coords)) ##input face
# 3.pose landmarks
T_pose_landmarks.append(all_pose_landmarks[input_frame_idx])
# 3.background
T_input_frame.append(ori_background_frames[input_frame_idx].copy())
T_mels = torch.FloatTensor(np.asarray(T_mel_batch)).unsqueeze(1).unsqueeze(0) # 1,T,1,h,w
#prepare pose landmarks
T_pose = torch.zeros((T, 2, 74)) # 74 landmark
for idx in range(T):
T_pose_landmarks[idx] = sorted(T_pose_landmarks[idx],
key=lambda land_tuple: ori_sequence_idx.index(land_tuple[0]))
T_pose[idx, 0, :] = torch.FloatTensor(
[T_pose_landmarks[idx][i][1] for i in range(len(T_pose_landmarks[idx]))]) # x
T_pose[idx, 1, :] = torch.FloatTensor(
[T_pose_landmarks[idx][i][2] for i in range(len(T_pose_landmarks[idx]))]) # y
T_pose = T_pose.unsqueeze(0) # (1,T, 2,74)
#landmark generator inference
Nl_pose, Nl_content = Nl_pose.cuda(), Nl_content.cuda() # (Nl,2,74) (Nl,2,57)
T_mels, T_pose = T_mels.cuda(), T_pose.cuda()
with torch.no_grad(): # require (1,T,1,hv,wv)(1,T,2,74)(1,T,2,57)
predict_content = landmark_generator_model(T_mels, T_pose, Nl_pose, Nl_content) # (1*T,2,57)
T_pose = torch.cat([T_pose[i] for i in range(T_pose.size(0))], dim=0) # (1*T,2,74)
T_predict_full_landmarks = torch.cat([T_pose, predict_content], dim=2).cpu().numpy() # (1*T,2,131)
#1.draw target sketch
T_target_sketches = []
for frame_idx in range(T):
full_landmarks = T_predict_full_landmarks[frame_idx] # (2,131)
h, w = T_crop_face[frame_idx].shape[0], T_crop_face[frame_idx].shape[1]
drawn_sketech = np.zeros((int(h * img_size / min(h, w)), int(w * img_size / min(h, w)), 3))
mediapipe_format_landmarks = [LandmarkDict(ori_sequence_idx[full_face_landmark_sequence[idx]]
, full_landmarks[0, idx], full_landmarks[1, idx]) for idx in
range(full_landmarks.shape[1])]
drawn_sketech = draw_landmarks(drawn_sketech, mediapipe_format_landmarks, connections=FACEMESH_CONNECTION,
connection_drawing_spec=drawing_spec)
drawn_sketech = cv2.resize(drawn_sketech, (img_size, img_size)) # (128, 128, 3)
if frame_idx == 2:
show_sketch = cv2.resize(drawn_sketech, (frame_w, frame_h)).astype(np.uint8)
T_target_sketches.append(torch.FloatTensor(drawn_sketech) / 255)
T_target_sketches = torch.stack(T_target_sketches, dim=0).permute(0, 3, 1, 2) # (T,3,128, 128)
target_sketches = T_target_sketches.unsqueeze(0).cuda() # (1,T,3,128, 128)
# 2.lower-half masked face
ori_face_img = torch.FloatTensor(cv2.resize(T_crop_face[2], (img_size, img_size)) / 255).permute(2, 0, 1).unsqueeze(
0).unsqueeze(0).cuda() #(1,1,3,H, W)
# 3. render the full face
# require (1,1,3,H,W) (1,T,3,H,W) (1,N,3,H,W) (1,N,3,H,W) (1,1,1,h,w)
# return (1,3,H,W)
with torch.no_grad():
generated_face, _, _, _ = renderer(ori_face_img, target_sketches, ref_imgs, ref_img_sketches,
T_mels[:, 2].unsqueeze(0)) # T=1
gen_face = (generated_face.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) # (H,W,3)
# 4. paste each generated face
y1, y2, x1, x2 = T_ori_face_coordinates[2][1] # coordinates of face bounding box
original_background = T_input_frame[2].copy()
T_input_frame[2][y1:y2, x1:x2] = cv2.resize(gen_face,(x2 - x1, y2 - y1)) #resize and paste generated face
# 5. post-process
full = merge_face_contour_only(original_background, T_input_frame[2], T_ori_face_coordinates[2][1],fa) #(H,W,3)
# 6.output
full = np.concatenate([show_sketch, full], axis=1)
out_stream.write(full)
if batch_idx == 0:
out_stream.write(full)
out_stream.write(full)
out_stream.release()
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(input_audio_path, '{}/result.avi'.format(temp_dir), outfile_path)
subprocess.call(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
print("succeed output results to:", outfile_path)