-
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathsetup.cfg
152 lines (144 loc) · 3.03 KB
/
setup.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
[metadata]
name = PyDTMC
author = Tommaso Belluzzo
author_email = [email protected]
maintainer = Tommaso Belluzzo
maintainer_email = [email protected]
description = A full-featured and lightweight library for discrete-time Markov chains analysis.
url = https://github.com/TommasoBelluzzo/PyDTMC
project_urls =
Bug Tracker = https://github.com/TommasoBelluzzo/PyDTMC/issues
Donation = https://www.paypal.com/donate?hosted_button_id=D8LH6DNYN7EN8
license = MIT
license_files =
LICENSE.md
platforms = any
classifiers =
Development Status :: 5 - Production/Stable
License :: OSI Approved :: MIT License
Natural Language :: English
Operating System :: OS Independent
Programming Language :: Python :: 3
Programming Language :: Python :: 3 :: Only
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Programming Language :: Python :: 3.11
Programming Language :: Python :: 3.12
Intended Audience :: Education
Intended Audience :: Financial and Insurance Industry
Intended Audience :: Science/Research
Intended Audience :: Other Audience
Topic :: Education
Topic :: Office/Business
Topic :: Scientific/Engineering
Topic :: Text Processing
Topic :: Other/Nonlisted Topic
keywords =
markov-chain
markov-chains
markov-model
markov-models
markov-state-model
markov-state-models
hidden-markov-model
hidden-markov-models
mathematics
statistics
probability
stochastic-process
stochastic-processes
analysis
fitting
simulation
[options]
python_requires = >=3.8
setup_requires =
setuptools
install_requires =
matplotlib<=3.7.3
networkx
numpy
scipy
[options.extras_require]
build =
setuptools
wheel
twine
docs =
docutils
typing-extensions
sphinx<=7.1.2
sphinx-autodoc-typehints
sphinx-rtd-theme
lint =
flake8
pylint
package =
defusedxml
numpydoc
pandas
pydot
tests =
coverage
pytest
pytest-benchmark
pytest-cov
coveralls
[bdist_wheel]
universal = 0
[coverage:run]
omit =
setup.py
docs/*
tests/*
pydtmc/__init__.py
pydtmc/base_class.py
pydtmc/custom_types.py
pydtmc/decorators.py
pydtmc/exceptions.py
pydtmc/utilities.py
[coverage:report]
exclude_lines =
pragma: no cover
def __eq__
def __hash__
def __repr__
def __str__
if self\.debug
[flake8]
count = True
ignore =
C901,
E501,
W605
max-complexity = 10
max-line-length = 120
statistics = True
[pylint]
max-line-length = 120
[pylint.'MESSAGES CONTROL']
disable =
C0103,
C0114,
C0116,
C0132,
C0301,
C0302,
C0415,
R0801,
R0903,
R0904,
R0912,
R0913,
R0914,
R0915,
R1702,
W0107,
W0123,
W0212,
W0611,
W0632,
W0703,
W1401,
W1514