-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExpand by regions box diagram.tex
279 lines (202 loc) · 10.8 KB
/
Expand by regions box diagram.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
\documentclass{article}
\usepackage{fullpage}
\usepackage{parskip}
\usepackage{physics}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{xcolor}
\usepackage[colorlinks,urlcolor=blue]{hyperref}
\usepackage{array}
\usepackage{longtable}
\usepackage{multirow}
\usepackage{comment}
\usepackage{graphicx}
\usepackage{cite}
\newcolumntype{M}{>{$\displaystyle}c<{$}}
\newcolumntype{L}{>{$\displaystyle}l<{$}}
\newcommand\Vtextvisiblespace[1][.3em]
{%
\mbox{\kern.06em\vrule height.3ex}%
\vbox{\hrule width#1}%
\hbox{\vrule height.3ex}
}
\newcommand{\cbox}[2][cyan]
{\mathchoice
{\setlength{\fboxsep}{0pt}\colorbox{#1}{$\displaystyle#2$}}
{\setlength{\fboxsep}{0pt}\colorbox{#1}{$\textstyle#2$}}
{\setlength{\fboxsep}{0pt}\colorbox{#1}{$\scriptstyle#2$}}
{\setlength{\fboxsep}{0pt}\colorbox{#1}{$\scriptscriptstyle#2$}}
}
\newcommand{\typical}{\cbox{\phantom{A}}}
\newcommand{\tall}{\cbox{\phantom{A^{\vphantom{x^x}}_x}}}
\newcommand{\grande}{\cbox{\phantom{\frac{1}{xx}}}}
\newcommand{\venti}{\cbox{\phantom{\sum_x^x}}}
\title{Expand by regions \texttt{box diagram}}
\author{Shuangran Liang \\ \texttt{[email protected]}}
\begin{document}
\maketitle
\tableofcontents
\section{The box diagram}
The box diagram:\\
%import the diagram here
%%\begin{figure}
%\includegraphics[scale=1]{draw.ps}
%\end{figure}
%explanation of the kinematic quantities here
The kinematic quantities:\\
$p_1=\frac{q}{2}+p$~~~~~$p_2=\frac{q}{2}-p$~~~~~$p_3=\frac{q}{2}+p'$~~~~~$p_4=\frac{q}{2}-p'$\\
Define the variables $y=m^2-\frac{q^2}{4}=p^2=p'^2$~~and~~$t=(p'-p)^2$\\
Since~~~$p.q=p'.q=0$\\
It's convinent to choose the frame in which~~~$p=(0,\va*{p})~~~p'=(0,\va*{p'})~~~q=(q^0,\va*{0})$\\
The threshold expansion is performed when $t\sim y<<q^2$
The integral represented by the diagram can be written directly from the Feynman Rules:\\
\begin{eqnarray}
I&=&\int[dk]\frac{1}{((k+p_1)^2-m^2)((p_2-k)^2-m^2)(k+p_1-p_3)^2k^2}\\\nonumber
&=&\int[dk]\frac{1}{((k+p)^2+k.q-y)((k+p)^2-k.q-y)(k+p-p')^2k^2}
\end{eqnarray}
where $[dk]=e^{\epsilon\gamma_{E}}\frac{d^Dk}{i\pi^\frac{D}{2}}$\\
Near the threshold,we have four regions.In each region,perform the expansion in the small quantities of the integrand before the loop momentum integration.\\
\subsection{Hard region}
The loop momentum is of the order of the CMS energy,we say it's hard, ie. $k\sim q$. The integrand is expand in y,p and p'.
\begin{equation}
I^h=\int[dk]\frac{1}{(k^2+k.q)(k^2-k.q)(k^2)^2}\\
\end{equation}
\begin{equation*}
\frac{1}{(\ k^2+k.q\ )(\ k^2-k.q\ )(\ k^2)^2\ }\ =\frac{1}{2(k^2)^3}(\frac{1}{k^2+k.q}+\frac{1}{k^2-k.q})\\
\vspace{0.2cm}
\end{equation*}
Use Feynman parametrization\\
\begin{equation}
{x (k^2+k.q) + (1-x) k^2 = (k+\frac{x}{2}q)^2 -\frac{q^2}{4} x^2}\\
\end{equation}
Integrate over k according to\\
\begin{equation}
\int[dl]\frac{1}{(l^2-\Delta)^n}=(-1)^n\frac{\Gamma(n-\frac{D}{2})}{\Gamma(n)}(\frac{1}{\Delta})^{n-\frac{D}{2}}
\end{equation}
The integration left to be done is:\\
\begin{equation}
\frac{\Gamma(4)}{\Gamma(3)}\frac{\Gamma(2+\epsilon)}{\Gamma(4)}\int^1_0dx \frac{(1-x)^2}{(\frac{q^2}{4}x^2)^{2+\epsilon}}=-\frac{8}{3}\\
\end{equation}
\subsection{Soft region }
Whhe the loop momentum becomes soft,ie. $k\sim \sqrt{y}$.~~~there is a contribution from the gluon poles. To the leading order expansion of the small quantities $y,(k+p)^2$,the integral is\\
\begin{eqnarray}
I^s&=&\int[dk]\frac{1}{(k.q+i0^+)(-k.q+i0^+)(k+p-p')^2k^2}\nonumber\\
&=&\frac{1}{q^2}\int[dk]\frac{1}{k_0^2~k^2~(k+p-p')^2}
\end{eqnarray}
Closing the upper complex plane,integrate over $k^0$.\\
\begin{eqnarray*}%adding * removes the number index
I^s&=&e^{\epsilon\gamma}\frac{2i\pi}{q^2}\int\frac{d^{D-1}k}{i\pi^\frac{D}{2}}{\frac{1}{2(\va*{k}^2)^\frac{3}{2}~[\va*{k}^2-(\va*{k}+\va*{p}-\va*{p'})^2]}+
{\frac{1}{2(\va*{k}+\va*{p}-\va*{p'})^\frac{3}{2}~[(\va*{k}+\va*{p}-\va*{p'})^2-\va*{k}^2]}}}\nonumber\\
&=&e^{\epsilon\gamma}\frac{1}{q^2}\int\frac{d^{D-1}k}{\pi^{\frac{D}{2}-1}}\frac{1}{(\va*{k}^2)^\frac{3}{2}}[\frac{1}{-2\va*{k}.(\va*{p}-\va*{p'})+t+i0^+}+\frac{1}{-2\va*{k}.(\va*{p}-\va*{p'})+t-i0^+}]\\
\end{eqnarray*}
According to $\displaystyle\frac{1}{(q^2)^n~(qv)^m}=\frac{(n+m-1)!}{(n-1)!~(m-1)!}\int^\infty_0 \frac{2^m\lambda^{m-1}d\lambda}{(q^2+2\lambda qv)^{n+m}}$\\
\begin{eqnarray}
I^s&=&e^{\epsilon\gamma}\frac{3}{q^2}\int^\infty_0d\lambda~\int\frac{d^{D-1}k}{\pi^{\frac{D}{2}-1}}\frac{1}{[\va*{k}^2+(4\lambda^2+2\lambda)t+i0^+]^\frac{5}{2}}+(i0^+\rightarrow -i0^+)\\\nonumber
&=&-e^{\epsilon\gamma}\frac{3\sqrt{\pi}}{q^2}\frac{\Gamma(1+\epsilon)}{\Gamma(\frac{5}{2})}\frac{1}{(-2t)^{1+\epsilon}}\int^\infty_0d\lambda~[\frac{1}{(2\lambda^2+\lambda)t+i0^+}]^{1+\epsilon}+(i0^+\rightarrow -i0^+)\\\nonumber
&=&\frac{1}{q^{2(2+\epsilon)}}~[-\frac{4}{\hat{t}}~(~\frac{1}{\epsilon}-\log{(-\hat{t})}~)]
\end{eqnarray}
\subsection{Potential region}
When the loop momentum is potential, ie. $k^0\sim \frac{y}{q}~~and~~\vec{k}\sim \sqrt{y}$,\quad expand in $k_0^2$.\\
\begin{eqnarray}
I^p&=&\int[dk]\frac{1}{[-(\vec{k}+\vec{q})^2+k_0 q_0-y+i0^+][-(\vec{k}+\vec{q})^2-k_0 q_0-y+i0^+][-(\vec{k}+\vec{p}-\vec{p'})^2](-\vec{k}^2)}\\\nonumber
&=&\frac{e^{\epsilon\gamma}}{q_0}\int\frac{d^{D-1}k}{\pi^{\frac{D}{2}-1}}\frac{1}{[(\vec{k}+\vec{p})^2+y-i0^+][(\vec{k}+\vec{p}-\vec{p'})^2-i0^+][\vec{k}^2-i0^+]}\\
\end{eqnarray}
\begin{eqnarray*}
x_1[(\vec{k}+\vec{p}-\vec{p'})^2-i0^+]+x_2[(\vec{k}+\vec{p})^2+y-i0^+]+(1-x_1-x_2)[\vec{k}^2-i0^+]\\
=[\vec{k}+x_1(\vec{p}-\vec{p'})+x_2\vec{p}]^2-[x_2^2\vec{p}^2+2x_1x_2\vec{p}(\vec{p}-\vec{p'})+x_1^2(\vec{p}-\vec{p'})^2+tx_1+i0^+]
\end{eqnarray*}
\begin{eqnarray*}
(\vec{p}-\vec{p'})^2=-t\\
\vec{p}^2=\vec{p'}^2=-y\\
\Delta=x_2^2\vec{p}^2+2x_1x_2\vec{p}(\vec{p}-\vec{p'})+x_1^2(\vec{p}-\vec{p'})^2+tx_1+i0^+
&=&-yx_2^2-tx_1^2+t(1-x_2)x_1
\end{eqnarray*}
First do $x_1->1-u_1$ and $x_2->u_2$;\\and then do $u_1->x_1$ and $u_2->x_1x_2$
After Feynman parametrition the integral becomes:\\
\begin{eqnarray}
I^p=\frac{i\sqrt{\pi}}{q_0}\Gamma(\frac{3}{2}+\epsilon)\int_0^1dx_1 \int_0^1dx_2 \frac{x_1}{\Delta^{\frac{3}{2}+\epsilon}}\\
\Delta=(-yx_2^2+tx_2-t)x_1^2+t(1-x_2)x_1-i0^+
\end{eqnarray}
\begin{equation}
I^p=\frac{ i\sqrt{\pi}}{q_0}\Gamma(\frac{3}{2}+\epsilon)\int_0^1dx_1 \int_0^1dx_2
\frac{x_1^{\frac{1}{2}}}{[{x_1(-yx_2^2+tx_2-t)+t(1-x_2)+i0^+}]^{\frac{3}{2}+\epsilon}}
\end{equation}
First do integration over $x_1$ and we get the integrand for the integration over $x_2$ to be:\\
\begin{equation}
-\frac{2 (t (1-x_2))^{-\epsilon -\frac{3}{2}} \, _2F_1\left(\frac{1}{2}-\epsilon ,\epsilon +\frac{3}{2};\frac{3}{2}-\epsilon ;\frac{x_2^2 y}{t (1-x_2)}+1\right)}{1-2 \epsilon }
\end{equation}
0 and 1 are singularity point for hypergeometric functions.Use an identity :\\
\begin{equation*}
\, _2F_1\left(\frac{1}{2}-\epsilon ,\epsilon +\frac{3}{2};\frac{3}{2}-\epsilon ;\frac{\text{x2}^2 y}{t (1-\text{x2})}+1\right)=\left(-\frac{\text{x2}^2 y}{t (1-\text{x2})}\right)^{\epsilon -\frac{1}{2}} \, _2F_1\left(\frac{1}{2}-\epsilon ,-2 \epsilon ;\frac{3}{2}-\epsilon ;\frac{t (1-\text{x2})}{\text{x2}^2 y}+1\right)\\
\end{equation*}
After using the identity,(10) becomes:\\
\begin{equation*}
\frac{2 t^{-2 \epsilon -1} (1-\text{x2})^{-2 \epsilon -1} \text{x2}^{2 \epsilon -1} (-y)^{\epsilon -\frac{1}{2}} \, _2F_1\left(\frac{1}{2}-\epsilon ,-2 \epsilon ;\frac{3}{2}-\epsilon ;\frac{t (1-\text{x2})}{\text{x2}^2 y}+1\right)}{1-2 \epsilon }
\end{equation*}
Divergences arise when $x_2$ is 0 or 1.Extract the singularities one by one. First use a trick to extract the singularity at $x_2=1$:\\
\begin{equation*}
\int dx\frac{f(x,\epsilon )}{(1-x)^{2\epsilon +1}}=\int dx\frac{f(1,\epsilon )}{(1-x)^{2\epsilon +1}}+\int dx\frac{f(x,\epsilon )-f(1,\epsilon )}{(1-x)^{2\epsilon +1}}
\end{equation*}
The first integral in the RHS is divergent but here $f(1,\epsilon )$ is finite.The second integral in the RHS is finite,so we can set $\epsilon$ to be 0 there.\\
\begin{equation}
\frac{\pi }{2 t \sqrt{y}}\left(\frac{1}{\epsilon }-2 \log (t)+\log (-y)-\gamma +2-\psi ^{(0)}\left(\frac{3}{2}\right)\right)
\end{equation}
Then do the trick again to extract the singularity at $x_2=0$:\\
\begin{equation*}
\int dx\frac{g(x,\epsilon )}{x^{-2\epsilon +1}}=\int dx\frac{g(0,\epsilon )}{x^{-2\epsilon +1}}+\int dx\frac{g(x,\epsilon )-g(0,\epsilon )}{(1-x)^{-2\epsilon +1}}
\end{equation*}
\begin{equation}
-\frac{\pi }{4 t \sqrt{y}}\left(\frac{1}{\epsilon }-2 \log (t)+\log (-y)+\gamma +2+\psi ^{(0)}\left(\frac{3}{2}\right)\right)
\end{equation}
Those two add up to obtain:\\
\begin{equation}
\frac{\pi }{4 t \sqrt{y}}\left(\frac{1}{\epsilon }-2 \log (t)+\log (-y)-\frac{3}{4}\gamma +2-\frac{3}{4}\psi ^{(0)}\left(\frac{3}{2}\right)\right)
\end{equation}
I found this can't get a finite answer for $\displaystyle\int dx\frac{g(x,\epsilon )-g(0,\epsilon )}{(1-x)^{-2\epsilon +1}}$,which should be finite.
The answer should be:\\
\begin{equation}
I^p=\frac{1}{(q^2)^{2+\epsilon}}\frac{\pi}{\hat{t}\sqrt{\hat{y}}}[~\frac{1}{\epsilon}-\log(-\hat{t})~]
\end{equation}
\textbf{Sector Decomposition}\\
(12) becomes:\\
\begin{equation}
I^p=\frac{i\sqrt{\pi}}{q}\Gamma[\frac{3}{2}+\epsilon][sectA+sectB]
\end{equation}
\begin{eqnarray}
sectA&=&\int_0^1dx_1\int_0^1dwx_1^{-1-2\epsilon}w^{-\frac{1}{2}-\epsilon}[[tx_1-y(1-x_1)^2]w+t]^{-\frac{3}{2}-\epsilon}\\
sectB&=&\int_0^1dx_2\int_0^1dux_2^{-1-2\epsilon}[tux_2-y(1-ux_2)^2+tu]^{-\frac{3}{2}-\epsilon}
\end{eqnarray}
sectA and sectB is divergent at $x_1->0$ or $x_2->0$ respectively.Perform integration over $x_1$ in sectA and $x_2$ in sectB first and then do the $w$ or $u$ integration later. The divergent term is:\\
From sectA:\\
\begin{equation*}
-\frac{1}{t \epsilon}\sqrt{}\frac{1}{i \delta +t-y}
\end{equation*}
From sectB:\\
\begin{equation*}
\frac{1}{t \epsilon }(\frac{1}{\sqrt{i \delta +t-y}}-\frac{1}{\sqrt{-y+i \delta }})
\end{equation*}
Add up to:\\
\begin{equation}
\frac{\pi }{2 t \sqrt{y} \epsilon }
\end{equation}
't Hooft \& Veltaman's paper about one-loop scalar diagrams is a good reference. \cite{'tHooft:1978xw}
\subsection{Ultrosoft region}
When the loop momentum is ultrasoft, ie. $k\sim \frac{y}{q}$
\begin{eqnarray}
I^{us}&=&\frac{1}{t}\int[dk]\frac{1}{(q_0k_0+i0^+)(-q_0k_0+i0^+)k^2}\\\nonumber
&=&0
\end{eqnarray}
\section{Conclusion}
We have done the leading term expansion in small quantities of each term of the denominators respectively,and we found there are 3 regions contributing to the box diagram. Adding them together is the leading term threshold expansion:
\begin{equation}
I=\frac{1}{q^{2(2+\epsilon)}}~[\frac{\pi}{\hat{t}\sqrt{\hat{y}}}-\frac{4}{\hat{t}}~](\frac{1}{\epsilon}-\log(-\hat{t}))-\frac{8}{3}+\mathcal{O}(\hat{t}^\frac{1}{2},\hat{y}^\frac{1}{2})
\end{equation}
\begin{thebibliography}{1}
\bibitem{'tHooft:1978xw}
G.~'t Hooft and M.~J.~G.~Veltman,
``Scalar One Loop Integrals,''
Nucl.\ Phys.\ B {\bf 153}, 365 (1979).
%%CITATION = NUPHA,B153,365;%%
%1046 citations counted in INSPIRE as of 21 Dec 2014
\end{thebibliography}
\end{document}