-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrender.py
134 lines (119 loc) · 5.95 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import imageio
import numpy as np
import torch
from scene import Scene
import os
import cv2
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams,OptimizationParams, get_combined_args, ModelHiddenParams
from gaussian_renderer import GaussianModel
from time import time
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
def render_set(model_path, name, iteration, views, gaussians, pipeline, background,multiview_video, fname='video_rgb.mp4'):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
render_images = []
gt_list = []
render_list = []
print(len(views))
# for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
# for idx in tqdm(range (100)):
fnum = 100
# fnum = 12
for idx in tqdm(range (fnum)):
view = views[idx]
if idx == 0:time1 = time()
#ww = torch.tensor([idx / 12]).unsqueeze(0)
ww = torch.tensor([idx / fnum]).unsqueeze(0)
# ww = torch.tensor([idx / 100]).unsqueeze(0)
if multiview_video:
rendering = render(view['cur_cam'], gaussians, pipeline, background, time=ww, stage='fine')["render"]
else:
rendering = render(view['pose0_cam'], gaussians, pipeline, background, time=ww, stage='fine')["render"]
render_images.append(to8b(rendering).transpose(1,2,0))
render_list.append(rendering)
time2=time()
print("FPS:",(len(views)-1)/(time2-time1))
print('Len', len(render_images))
imageio.mimwrite(os.path.join(model_path, name, "ours_{}".format(iteration), fname), render_images, fps=8, quality=8)
def render_set_timefix(model_path, name, iteration, views, gaussians, pipeline, background,multiview_video, fname='video_rgb.mp4',time_fix=-1):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
render_images = []
gt_list = []
render_list = []
print(len(views))
# for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
for idx in tqdm(range (12)):
#for idx in tqdm(range (100)):
view = views[idx]
if idx == 0:time1 = time()
# ww = torch.tensor([idx / 16]).unsqueeze(0)
ww = torch.tensor([idx / 100]).unsqueeze(0)
if time_fix!=-1:
ww=torch.tensor([time_fix/16]).unsqueeze(0)
if multiview_video:
rendering = render(view['cur_cam'], gaussians, pipeline, background, time=ww, stage='fine')["render"]
render_images.append(to8b(rendering).transpose(1,2,0))
render_list.append(rendering)
time2=time()
print("FPS:",(len(views)-1)/(time2-time1))
print('Len', len(render_images))
imageio.mimwrite(os.path.join(model_path, name, "ours_{}".format(iteration), fname), render_images, fps=7, quality=8)
def render_sets(dataset : ModelParams, hyperparam, opt,iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool, skip_video: bool,multiview_video: bool):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree, hyperparam)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not skip_train:
render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background,multiview_video)
if not skip_test:
render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background,multiview_video)
if not skip_video:
#origin
render_set(dataset.model_path,"video",scene.loaded_iter,scene.getVideoCameras(),gaussians,pipeline,background,multiview_video=True, fname='multiview.mp4')
render_set(dataset.model_path,"video",scene.loaded_iter,scene.getVideoCameras(),gaussians,pipeline,background,multiview_video=False, fname='pose0.mp4')
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser)
op = OptimizationParams(parser)
pipeline = PipelineParams(parser)
hyperparam = ModelHiddenParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--skip_video", action="store_true")
parser.add_argument('--multiview_video',default=False,action="store_true")
parser.add_argument("--configs", type=str)
args = get_combined_args(parser)
print("Rendering " , args.model_path)
if args.configs:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args.configs)
args = merge_hparams(args, config)
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), hyperparam.extract(args), op.extract(args),args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, args.skip_video,args.multiview_video)